Устройство циркуляционного насоса
Циркулярная помпа необходима для циркуляции воды и поддерживания натиска в магистрали поставки воды. Если данный прибор установлен в обогревательной системе – температура тепла по трубам будет располагаться равномерным образом. Устройство предотвращает сбои в системе поставки воды и позволяет уменьшить расход электроэнергии.
Циркуляционная помпа Источник https://cdnmedia.220-volt.ru
Устройство циркуляционного насоса:
- металлический корпус;
- ротор;
- крыльчатка.
Подробное устройство циркуляционного аппарата Источник https://avatars.mds.yandex.net
Для чего нужен циркуляционный насос
Данные устройства используются в таких сферах, как:
- система отопления;
- подача горячей воды;
- «теплый пол»;
- вентиляционная система;
- канализация.
Более подробную информацию о циркуляционных насосах смотрите в ролике:
Важные расчёты
Для того чтобы сделать правильный подбор насосного агрегата для системы частного водоснабжения, необходимо провести верные расчёты производительной мощности и напора агрегата.
Производительная мощность (производительность) позволяет насосу качать воду с требуемым для расхода в доме объемом. Стоит знать, что согласно СНИП, средний расход воды в сутки на одного проживающего в доме составляет 200 литров. При этом всегда нужно этот показатель умножать на количество человек,
Но необходимо принять во внимание при расчетах производительной мощности помпы и момент, при котором все водозаборные точки будут включены одновременно. К полученным данным стоит прибавлять и возможное потребление воды для полива огорода
Согласно СНИП этот показатель равен 3-6 литров на 1м3 участка.
Для справки: средний объем расхода воды на каждую водозаборную точку выглядит так:
- Душ или ванна — около 10 л/мин;
- Туалет — 5-6 л/мин;
- Кран в кухонной мойке — 6 л/мин.
При условии одновременного использования всех перечисленных сантехнических точек потребление воды составит в среднем 20-22 л/мин.
Расчет пускового тока электродвигателя
В момент запуска электродвигателя его вал остается в неподвижном состоянии. Для того чтобы он начал раскручиваться, необходимо приложить усилие, значительно больше номинального. В связи с этим пусковой ток также превышает номинал. В процессе раскручивания вала происходит постепенное плавное уменьшение тока.
Влияние пусковых токов негативно сказывается на работе оборудования, в основном из-за резких провалов напряжения. Для того чтобы уменьшить их отрицательное воздействие, применяются различные способы. В процессе разгона, схемы электродвигателя переключаются со звезды на треугольник, используются частотные преобразователи и электронные устройства плавного пуска.
Вначале рассчитывается значение номинального тока двигателя, в соответствии с его типом и номинальной мощностью. Для устройств постоянного тока формула будет выглядеть следующим образом:
У электродвигателей переменного тока номинальный ток определяется по другой формуле:
Все параметры имеют соответствующие обозначения:
- РН – значение номинальной мощности двигателя;
- UH – значение номинального напряжения двигателя;
- ηH–КПД электродвигателя;
- cosfH – соответствует коэффициенту мощности двигателя.
После расчетов номинального тока можно вычислить значение пускового тока по формуле:
, в которой:
- IH – номинальное значение тока, определенное ранее;
- Кп–кратность постоянного тока к номиналу.
Значение пускового тока рассчитывается для каждого двигателя, имеющегося в электрической цепи. В соответствии с его величиной выбирается автоматический выключатель, обеспечивающий защиту всей цепи.
Как рассчитать характеристики подходящего для вас насоса и насосной станции
Самое главное при покупке насоса – это понять, какие характеристики будут подходить именно под ваши потребности. Насос с малой производительностью может не обеспечить достаточным напором ваш душ и стиральную машинку, а насос с избыточным напором может вывести из строя водопроводную систему.
Итак, для расчета оптимальных характеристик вам необходимо определиться с двумя величинами – производительность и напор.
Производительность
В данной таблице представлены самые часто встречающиеся точки потребления, а так же степень расхода воды на каждую, выраженная в литрах в минуту:
Точки потребления | Расход (л/мин) |
Раковина для умывания | 10 |
Ванна | 18 |
Душ | 12 |
Туалетный унитаз | 7 |
Стиральная машина | 12 |
Посудомоечная машина | 12 |
Кухонная раковина | 12 |
Полив сада | 12 |
Для расчета потребности в воде необходимо сложить все точки потребления, которые будут использоваться на вашем дачном участке (в случае, если несколько точек потребления находятся в одном помещении, выбирается точка с максимальным потреблением). Общую сумму необходимо умножить на 0,75, так как на практике одновременно используется только часть точек потребления.
Например: в вашем загородном доме есть кухня с подключенной к водопроводной системе раковиной (12 л/мин). Кроме того, в вашей ванной комнате есть унитаз, раковина, сама ванна и стиральная машина (берем источник максимального потребления 18 л/мин). И вы планируете поливать сад с помощью поливальной машины (12 л/мин). Общая сумма расхода воды со всех ваших точек потребления равна:
12 + 18 + 12 = 42 л/мин
Эту сумму необходимо умножить на 0,75.
42 х 0,75 = 31,5 л/мин
Итак, Итоговая сумма вашего потребления равна 31,5 л/мин.
Напор
Для расчета подходящего для вас напора необходимо посчитать длины всех труб от подключенного насоса до точек потребления. Необходимо учесть, что, если труба проходит горизонтально, то значение её длины необходимо умножить на коэффициент 0,1. Для погружных насосов считаем длину труб от зеркала воды, не беря в расчет на сколько он погружен.
Например: длина труб до ванной комнаты равна 8 м, до кухни – 12 м, до поливальной машины 5 м.
Напор = 8 + 12 + 5 + 1,5 (поправочный коэффициент) =26,5 м
Итак, итоговое значение напора, которым должен обладать ваш насос, равно 26,5 м
Для справки: Для нормального функционирования водопроводной системы давление в точке потребления (напор) должно быть не ниже 1,5 бар и не выше 4 бар. 1 метр напора = 0,1 бар (атм,кг) давления. В нашем примере напор равен 26,5 м.: 26,5 х 0,1 = 2,65 бар
Получившееся значение находится в допустимых пределах (1.5
Источник
Способы измерения производительности
- Ротаметр. Прибор представляет собой стеклянную трубку с поплавком, немного расширяющуюся кверху. Ротаметр вмонтирован в трубопровод, для измерения прибор снабжен шкалой и калибровочным графиком. С ростом подачи поплавок поднимается вверх. Вид калибровочного графика определяется конструкцией измерительного прибора и свойствами жидкой среды.
- Дифманометр с мерной диафрагмой. Прибор выглядит как U-образная трубка с жидкостью. Диафрагма в виде переборки с отверстием ставится в трубопровод, трубка подключается двумя шлангами, подсоединенными перед диафрагмой и за ней. Жидкости в трубопроводе и дифманометре не перемешиваются. Напор перекачиваемой жидкой среды после прохода через диафрагму снижается. По шлангам напор передается жидкости в U-образной трубке. Чем выше производительность, тем больше отличается напор с обеих сторон диафрагмы и тем выше разница между уровнями жидкости в двух ветвях дифманометрической трубки. Измерительные показания дифманометра переводятся в подачу с помощью градуировочного графика.
- Автоматические измерительные приборы. Информация о величине подачи передается на компьютер в виде электрического сигнала.
Основные параметры центробежного насоса
Основными параметрами центробежного насоса служат подача; напор, мощность, КПД и частота вращения вала.
Подача насоса Q это действительный объем жидкости, перекачиваемый в единицу времени. Массовая подача G представляет собой отношение массы подаваемой жидкости ко времени.
Для приближенной оценки максимальной подачи центробежного насоса пользуются формулой Q=KD2, где D диаметр нагнетательного патрубка; К коэффициент, который для насосов с нагнетательным патрубком менее 100 мм равен 1316, а более 100 мм 2025.
В центробежных насосах встречаются объемные потери, которые обусловлены вытеканием жидкости через различные уплотнения. У современных крупных центробежных насосов объемный КПД
η0 = 0,96/0,98, а у небольших и средних насосов η0= 0,85/0,95.
Гидравлические потери в центробежных насосах обусловлены несовершенством изготовления проточной части и рабочих колес. Эти потери учитывают гидравлическим КПД. Для современных насосов
ηг=0,85/0,96. Небольшие насосы с плохой обработкой внутренних поверхностей имеют ηг =0,8/0,85.
Механические потери обусловлены трением в уплотнениях и подшипниках, а также трением жидкости о поверхности рабочих колес и других частей насоса. Механический КПД крупных насосов ηм=0,92/0,96.
Общий КПД различных насосов может быть η= 0,6/0,92, его определяют по формуле η= QρH/(102 N), где ρ плотность жидкости, кг/м3; H напор, м; N мощность насоса, кВт; Q подача, м3/с.
Напор насоса H это прирост удельной энергии жидкости, подученной ею в насосе. Числовое значение напора зависит от конструкции колеса и его размеров, от частоты вращения вала и свойств жидкости.
Напор можно подсчитать по формуле H=p/(pg), где р давление, Па; р плотность жидкости, кг/м3; g ускорение свободного падения, м/с2.
Полезную мощность насоса Na определяют по формуле Nn= =pgQH, где Q подача насоса, м3/с; р плотность жидкости, кг/м3; g ускорение свободного падения, м/с2; Hнапор насоса, м.
В центробежных насосах различают вакуумметрическую и геометрическую высоту всасывания. Вакуумметрическая высота всасывания любого насоса слагается из геометрической высоты всасывания Hг.в(см. рис. 44, а), потерь напора во всасывающем трубопроводе Нс.в , скоростного напора во всасывающем патрубке насоса v2/(2g) и может быть определена по формуле Hвак=Hг.в +
Допустимая вакуумметрическая высота всасывания это та высота, при которой обеспечивается работа насоса без изменения основных технических показателей. Допустимую вакуумметрическую высоту всасывания указывают при определенной температуре перекачиваемой жидкости, давлении на ее поверхность, подаче и частоте вращения вала насоса.
Полную высоту подъема (напор насосной установки) определяют по формуле H=Hг+Hс, где Hг=Hг.в+Hг.н общая геометрическая высота подъема жидкости, которая складывается из гео-
метрической высоты всасывания и пьезометрической высоты нагнетания; НС= НС.В + НС.Н сумма потерь напора во всасывающем и напорном трубопроводах.
Потери напора во всасывающем и напорном трубопроводах состоят из потерь напора на преодоление сопротивления трения о стенки труб и потерь на преодоление местных сопротивлений при прохождении жидкости через задвижки, клапаны и т. д.
Если центробежный насос установлен так, что вакуумметрическая высота всасывания больше, чем необходимо для данного насоса, если температура перекачиваемой жидкости высокая, а также негерметичен всасывающий трубопровод, увеличено сопротивление на линии всасывания, то может наступить явление, называемое кавитацией.
Кавитация это разрушение лопаток и корпуса центробежного насоса под действием множества микроударов, возникающих при захлопывании пузырьков паров жидкости при попадании потока из области низкого давления (всасывание) в область высокого давления (нагнетание). Пузырьки паров образуются тогда, когда давление в потоке жидкости становится меньше давления паров жидкости при данной температуре.
Кавитация сопровождается характерным шумом при работе насоса, вибрацией, снижением КПД, напора и подачи.
При возникновении кавитации насос необходимо немедленно’ выключить, найти и устранить причину кавитации.
Для предотвращения кавитации следует правильно устанавливать насос и обеспечивать нормальные условия его эксплуатации.
КПД промышленных насосов
В данной статье косвенно рассмотрим коэффициент полезного действия насосов различных видов: центробежных, винтовых, импеллерных, мембаранно-пневматических.
Центробежный насос
КПД самых распространенных центробежных насосов во многом зависит от режима их работы и конструктивных особенностей. Максимальным КПД обладают центробежные насосы с приводом большой мощности и высокими рабочими характеристиками. Их эффективность может достигать 92-95 %. Значение мощности двигателя таких центробежных насосов обычно начинается от 10кВт, а насосная часть имеет высокое качество изготовления.
Насос с магнитной муфтой
Насосы с магнитной муфтой имеют схожий КПД
Для данного типа насоса очень важно, чтобы герметичная задняя крышка насоса, располагающаяся между ведущим и ведомым магнитом, была изготовлено из токонепроводящих материалов. Иначе, будут возникать вихревые токи, которые вызывают потерю мощности и снижают общий КПД насоса
Винтовой насос
Винтовые насосы имеют высокие механические потери. Они в первую очереди связаны с трениями, которые возникают в подшипниковом узле, а также между ротором и статором, но благодаря высоким рабочим характеристикам (расход, напор) данный тип насосов может иметь КПД колеблющийся от 40 до 80 %.
Импеллерный насос
Импеллерные насосы бережно перекачивают жидкость, создавая равномерный ламинарный поток и высокое давление на выходе, но высокие механические потери обусловленные трением гибких лопастей импеллера о внутреннюю поверхность корпуса не позволяет данному типу насосов быть лидером по эффективности.
Мембранно-пневматический насос
Мембранно-пневматические насосы не имеют двигателя и работают от поданного на него сжатого воздуха. Так как требуется дополнительное превращение электрической энергии в энергию сжатого воздуха, то КПД мембранно-пневматического насоса во многом зависит от КПД воздушного компрессора. Обычно КПД поршневых компрессоров составляет 80-92%, лопастных 90-96%. Кроме этого, в самом насосе, в той или иной мере, присутствуют все виды потерь. Гидравлические потери возникают, когда жидкость через небольшое всасывающее отверстие поступает в рабочую камеру насоса и выходит через отверстие подачи под определенным углом. Здесь поток жидкости сталкивается с внезапным расширением сечения при последующем резком повороте. Механические потери связаны с тем, что основная втулка насоса является парой трения скольжения. Кроме этого имеет место трение жидкости с деталями насоса: клапана, коллектора, мембрана, стенки боковой крышки. Объемные потери определяются отношением количества жидкости поступившего в насос и количеством жидкости вышедшего из него за два такта (всасывание – нагнетание).
Технические характеристики Центробежного насоса
Подача — Q [м³/ч] — объём воды, подаваемый насосом в единицу времени. Оптимальная подача центробежного насоса достигается при максимальном значении коэффициента полезного действия. Фактическая подача насоса определяется развиваемым напором и может быть вычислена по напорно-расходной характеристике конкретного насоса.
Напор — H — разница давлений между входным и выходным патрубком насоса. В замкнутом циркуляционном кольце напор насоса определяется суммой потерь напора на всех элементах циркуляционного кольца.
Напорно-расходная характеристика — графическое отображение зависимости напора центробежного насоса от его подачи. Тихоходные насосы с частотой вращения менее 1500 об/мин обладают более пологой характеристикой, то есть напор создаваемый насосом с изменением подачи изменяется не столь существенно как у быстроходных насосов.
Гидравлическая характеристика сети — графическое отображение зависимости потерь напора в сети (циркуляционном кольце) от протекающего расхода. Гидравлическая характеристика сети имеет форму параболы, так как изменение потерь напора в циркуляционном кольце, равно квадрату изменения протекающего расхода.
Рабочая точка насоса — точка на пересечении напорно-расходной характеристики насоса и гидравлической характеристики сети. Рабочая точка определяет какими будут подача и напор насоса при включении его в сеть (циркуляционное кольцо). Напор всегда равен сопротивлению системы, а установившийся расход можно определить опустив с рабочей точки перпендикуляр на ось подачи (абсцисс).
Высота всасывания — Нвс — разница уровня в метрах, между осью рабочего колеса насоса и уровнем жидкости в нижнем резервуаре, за вычетом потерь напора в трубопроводе соединяющим нижний резервуар с насосом и при условии, что вода в нижнем резервуаре находится под атмосферным давлением.
Подъём воды с нижнего резервуара происходит за счёт разницы давлений, при этом в рабочем колесе насоса создаётся разрежение, а на воду действует атмосферное давление. Так как атмосферному давлению соответствует столб воды высотою в 10,3 метра, а насос не может создать в рабочем колесе абсолютный вакуум — высота всасывания насоса не может быть более 8 метров.
Кавитационный запас — NPSH — минимальное давление во всасывающем патрубке насоса обеспечивающее безкавитационную работу. Значение кавитационного запаса определяется опытным путём производителями насосов и приводится в виде графика в зависимости от подачи насоса.
Полезная мощность насоса — Nu — определяется полной энергией передаваемой в насосе жидкости за единицу времени.
Мощность на валу насоса — Nw — механическая мощность, которая передаётся на вал центробежного насоса. Механическая мощность больше полезной, на величину гидравлических потерь и потерь на трение в рабочем колесе.
КПД насоса — η — коэффициент полезного действия характеризующий степень совершенства центробежного насоса и определяется как отношение полезной мощности к мощности на валу.
Класс энергоэффективности — — общепринятая классификация бытовых товаров отображающая эффективность использования энергии. Классы энергоэффективности обозначаются латинскими буквами от A до G. Товары маркированные буквой A имеют наименьшее энергопотребление, а товары с маркировкой G соответственно — наибольшее.
Если сравнивать насосы с похожими гидравлическими характеристиками различного класса энергоэффективности, можно установить что разница в потреблении энергии насосами двух смежных классов составляет 22%. Насос класса A потребляет только около 33% электроэнергии, необходимой для работы насоса класса D.
Номинальный диаметр — DN — численное обозначение внутреннего диаметра присоединительных патрубков центробежного насоса общее для всех трубопроводных элементов. Номинальный диаметр насоса не имеет размерности, но его значение приблизительно равно внутреннему диаметру присоединяемого трубопровода.
Ряд условных проходов DN (Ду) трубопроводных элементов регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)». Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр — Ду насоса.
Номинальное давление — PN — наибольшее избыточное давление воды с температурой в 20°C, при котором допускается длительная работа насоса.
Альтернативным обозначением номинального давления, распространённым в странах постсоветского пространства, было условное давление — Ру насоса. Ряд номинальных давлений PN (Ру) трубопроводных элементов регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».
Основные ошибки монтажа
Давайте вместе разберем наиболее распространенные ошибки, которые допускают многие из нас:
Диаметр всасывающего патрубка. Довольно часто диаметр трубопровода на практике оказывается меньше диаметра всасывающего патрубка. Такая конструкция в случае подключения увеличивает сопротивление со стороны всасывающей магистрали, тем самым сокращая величину глубины всасывания. Выражаясь простым языком: уменьшенный по диаметру трубопровод просто не в состоянии пропустить тот размер жидкости, который с легкостью всасывает и перекачивает насос.
Прямое подключение к обычному шлангу. Такая система не особо критична при условии использования насоса небольшой производительности. В противном случае под воздействием большого давления, создаваемого насосом, шланг сожмется, его сечение значительно сократится, а вода просто не сможете пройти сквозь него. Это в лучшем случае приведет к прекращению подачи воды, в худшем — к поломке насоса без возможности его последующего ремонта.
Большое число изгибов и поворотов в трубопроводе. Такой вариант монтажа не повышает величину сопротивления, соответственно уменьшает производительность и величину напора насоса
Именно поэтому так важно привести количество изгибов и поворотов к минимальному значению, если вы хотите использовать приобретенный и установленный насос на все 100%.
Герметизация. Именно ввиду недостаточной герметизации на всасывающем участке трубопровода могут возникать существенные потери воды
Плохая герметизация не только сокращает напор воды, но и сопровождает процесс работы насоса излишним шумом.
Режимы работы электродвигателей
Нагрузка на электродвигатель определяется режимом его работы. Она может оставаться неизменной или изменяться в зависимости от условий эксплуатации. При выборе двигателя обязательно учитывается характер и значение предполагаемой нагрузки. С учетом этого фактора выполняется расчет мощности электродвигателя.
Режимы, в которых работают электродвигатели:
- S1 – продолжительный режим. Нагрузка не меняется в течение всего периода эксплуатации. Температура двигателя достигает установленного значения.
- S2 – кратковременный режим. В этом случае в период работы температура не успевает достигнуть нужного значения. При отключении происходит охлаждение двигателя до температуры окружающей среды.
- S3 – периодически-кратковременный режим. В процессе работы двигателя производятся периодические отключения. В эти периоды температура двигателя не может достигнуть нужного значения или стать такой же, как в окружающей среде. При расчетах двигателя, в том числе и мощности, учитываются все паузы и потери, их продолжительность. Одним из важных критериев выбора агрегата, считается допустимое число включений за определенный отрезок времени.
- S4 – периодически-кратковременный режим с частыми пусками.
- S5 – периодически-кратковременный режим с электрическим торможением. Оба режима S4 и S5 работают также, как и S3.
- S6 – периодически-непрерывный режим с кратковременной нагрузкой. Эксплуатация двигателя осуществляется под нагрузкой, которая чередуется с холостым ходом.
- S7 – периодически-непрерывный режим с электрическим торможением.
- S8 – периодически-непрерывный режим, в котором одновременно изменяется нагрузка и частота вращения.
- S9–режим, когда нагрузка и частота вращения изменяются не периодически.
Источник
На что влияет производительность
Потребительские свойства насоса выражаются зависимостью напора от подачи. Максимальной подаче соответствует минимальный напор, и наоборот.
График зависимости получают опытным путем и заносят в сопровождающую техническую документацию. Если по каким-либо причинам соответствующая информация отсутствует, ее запрашивают на предприятии-изготовителе или самостоятельно тестируют оборудование на месте.
Длительная бесперебойная работа насоса возможна только при соответствии производительности условиям эксплуатации. Обычно требуемая величина объемного расхода известна заранее, поскольку оборудование подбирают под конкретную трубопроводную систему.
Производительность, м³/ч | Подходящий тип насоса |
До 10 | Бочковые, насосы-дозаторы, винтовые, импеллерные, полупогружные центробежные, мембранные, химические центробежные, оборудование для дезинфекции |
10 – 100 | Винтовые, импеллерные, полупогружные центробежные, мембранные, химические центробежные |
Каждый тип насосного оборудования используют в определенной сфере применения. В ряде случаев возможные направления использования перекрываются. Например, винтовые насосы в отдельных областях успешно конкурируют с центробежными.
Если эксплуатационным требованиям удовлетворяют сразу несколько типов насосов, предпочтение отдают оборудованию, наиболее подходящему к конкретной величине производительности. Учитывают цену и затраты на эксплуатацию, включая размер потребляемой мощности и расходы на обслуживание или ремонт.