bik ton
В статье подробно указано, где искать необходимые нормативы для самостоятельного расчета. Приводятся примеры вычисления, какой толщины должны быть стены из газобетона для различных климатических зон. Информация подается простым и понятным языком.
При возведении частных домов стал пользоваться популярностью такой материал, как газобетон. В связи с этим становится актуальным вопрос какой толщины должны быть стены из газобетона. Многие застройщики утверждают, что стена из легких блоков толщиной от 30 до 40см вполне самодостаточна, и утеплять ее не имеет смысла. Чтобы проверить такое утверждение, необходимо обратиться к двум документам: СНиП 23-02-2003, в нем описываются нормативы тепловой защиты для жилых помещений; СП 23-101-2004 – это свод правил, которыми необходимо руководствоваться при проектировании тепловых защит.
Толщина стен в доме сезонного проживания (дача)
В домах, где проживают только в теплое время года, допускается минимальная толщина газобетонных стен (с учетом плотности выбранного материала). Например, конструктивно-теплоизоляционные марки с плотностью D350-D450 и прочностью более В2,0 могут иметь минимальную толщину в одноэтажных домах с самонесущими стенами не менее 20см. Если используется автоклавный газобетон, то толщина несущих стен должна быть от 60см, а самонесущих — 30см (в соответствии с нормами CTO 501-52-01-2007, указанными в пункте 6.2.11).
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м² ;
- Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Анатолий Коневецкий, Крым, Ялта
Анатолий Коневецкий, Крым, Ялта
Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.
Анатолий Коневецкий, Крым, Ялта
Пример №1
Необходимо определить правильное количество секций для радиатора М140-А, который будет установлен в помещении, расположенном на верхнем этаже. При этом стена наружная, под подоконником ниша отсутствует. А расстояние от него до радиатора составляет всего 4 см. Высота помещения 2,7 м. Qn=1410 Вт, а tв=18 °С. Условия подключения радиатора: подсоединения к однотрубному стояку проточно-регулируемого типа (Dy20, кран КРТ с подводкой 0,4 м); разводка отопительной системы верхняя, tг = 105°С, а расход теплоносителя по стояку составляет Gст = 300 кг/ч. Разница температуры теплоносителя подающего стояка и рассматриваемого составляет 2°С.
Определяем средний показатель температуры в радиаторе:
tср = (105 — 2) — 0,5х1410х1,06х1,02х3,6 / (4,187х300) = 100,8 °С.
Опираясь на полученные данные, вычисляем плотность теплового потока:
tср = 100,8 — 18 = 82,8 °С
При этом следует отметить, что произошло незначительное изменение уровня расхода воды (360 до 300 кг/ч). Данный параметр практически никак не влияет на qnp.
Qпр =650(82,8/70)1+0,3=809Вт/м2.
Далее определяем уровень теплоотдачи горизонтально (1г = 0,8 м) и вертикально (1в = 2,7 — 0,5 = 2,2 м) расположенных труб. Для этого следует воспользоваться формулой Qтр =qвхlв + qгхlг.
Получаем:
Qтр = 93х2,2 + 115х0,8 = 296 Вт.
Рассчитываем площадь требуемого радиатора по формуле Ap = Qnp/qnp и Qпp = Qп — µ трхQтр:
Ар =(1410-0,9х296)/809=1,41м2.
Рассчитываем необходимое количество секций радиатора М140-А, учитывая, что площадь одной секции составляет 0,254 м2:
м2 (µ4=1,05, µ 3 = 0,97 + 0,06 / 1,41= 1,01, воспользуемся формулой µ 3 = 0,97 + 0,06 / Ар и определяем:
N=(1,41/0,254)х(1,05/1,01)=5,8.
То есть, расчет потребления тепла на отопление показал, что в помещении для достижения максимально комфортной температуры следует установить радиатор, состоящий из 6 секций.
Теплотехнический расчет.
Приступаем непосредственно к теплотехническому расчету, а именно – нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.
В первую очередь – определяем норму тепловой защиты из условий соблюдения санитарных норм.
Согласно формулы 3 из СНиП 23-02-2003 “Тепловая защита зданий” рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:
где:
n = 1 – коэффициент, принятый по таблице 6, из СНиП 23-02-2003 “Тепловая защита зданий” для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);
tint = 20°С – оптимальная температура в помещении, из исходных данных;
text = -30°С – температура наиболее холодной пятидневки, значение из исходных данных;
Δtn = 4°С – данный показатель принимается по таблице 5, из СНиП 23-02-2003 “Тепловая защита зданий” он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);
αint = 8,7 Вт/(м2×°С) – коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 “Тепловая защита зданий” для наружных стен.
Выполняем расчет:
получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;
Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.
Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий”:
Dd = (tint – tht)zht = (20 + 4,0)*214 = 5136°С×сут
Примечание: градусо-сутки ещё имеют сокращенное обозначение – ГСОП.
Далее, согласно СНиП 23-02-2003 “Тепловая защита зданий” в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:
Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,
где: Dd – градусо-сутки отопительного периода в г. Муром,
a и b – коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 “Тепловая защита зданий” для стен жилого здания.
таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;
Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;
Определение толщины утеплителя
Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:
где:
δi- толщина слоя, мм;
λi – расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
Рассчитываем термическое сопротивление для каждого слоя
1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.
3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:
где:
Rint = 1/αint = 1/8,7 – сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 – сопротивление теплообмену на наружной поверхности,
αext принимается по таблице 14 для наружных стен;
ΣRi = 0,116 + 0,104 + 0,023 – сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт
Толщина утеплителя равна:
где: λут – коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:
где: ΣRт,i – сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.
Из полученного результата можно сделать вывод, что
R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.
Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором “Теплотехнический расчет стены”, где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.
Теплотехнический расчет.
Приступаем непосредственно к теплотехническому расчету, а именно – нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства. В первую очередь – определяем норму тепловой защиты из условий соблюдения санитарных норм. Согласно формулы 3 из СНиП 23-02-2003 “Тепловая защита зданий” рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:
где: n = 1 – коэффициент, принятый по таблице 6, из СНиП 23-02-2003 “Тепловая защита зданий” для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);
tint = 20°С – оптимальная температура в помещении, из исходных данных;
text = -30°С – температура наиболее холодной пятидневки, значение из исходных данных;
Δtn = 4°С – данный показатель принимается по таблице 5, из СНиП 23-02-2003 “Тепловая защита зданий” он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);
αint = 8,7 Вт/(м2×°С) – коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 “Тепловая защита зданий” для наружных стен.
Выполняем расчет:
получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;
Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.
Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий”:
Dd = (tint – tht)zht = (20 + 4,0)*214 = 5136°С×сут
Примечание: градусо-сутки ещё имеют сокращенное обозначение – ГСОП.
Далее, согласно СНиП 23-02-2003 “Тепловая защита зданий” в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:
Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,
где: Dd – градусо-сутки отопительного периода в г. Муром,
a и b – коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 “Тепловая защита зданий” для стен жилого здания. таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;
Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;
Определение толщины утеплителя
Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:
где: δi- толщина слоя, мм; λi – расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
Рассчитываем термическое сопротивление для каждого слоя 1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт. 3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт. 4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:
где:
Rint = 1/αint = 1/8,7 – сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 – сопротивление теплообмену на наружной поверхности,
αext принимается по таблице 14 для наружных стен;
ΣRi = 0,116 + 0,104 + 0,023 – сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт
Толщина утеплителя равна:
где: λут – коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:
где: ΣRт,i – сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.
Из полученного результата можно сделать вывод, что
R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.
Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором “Теплотехнический расчет стены”, где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.
Виды расчета потерь тепла в жилом доме
Рассчитать потери тепла в своей квартире или доме можно с помощью онлайн-программ расчета теплопотерь. Для каждой ограждающей конструкции (пола, стены, окна и т.п.) имеется отдельная графа, позволяющая по заданным параметрам определить примерное количество потерь и выявить уязвимые места.
Полученные данные будут точнее передавать информацию, чем расчет теплопотерь по укрупненным показателям теплопередачи, созданным в советские времена, для стандартных типовых проектов домов.
Произвести вычисления можно и с помощью теплотехнических калькуляторов, также доступных в интернете. Данные программы позволяют проверить теплоизоляционную толщину на соответствие нормативами, а также рассчитать требуемую ширину слоя теплоизоляции, исходя из их характеристик сопротивления теплоотдаче.
Существуют также программы-приложения для расчета теплопотерь дома, устанавливаемые на мобильные устройства. С их помощью можно на этапе внутренней отделки строящегося МКД подобрать элементы утепления квартиры, размеры радиаторов и т.п.
Для фактического определения утечки тепла можно использовать тепловизор. Это измерительный прибор, который используется для проверки проводимых строительных работ или для выявления уязвимых мест в старом доме, с целью последующего утепления.
Цель теплотехнического расчета
От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и перекрытиях.
Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.
Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.
По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха — 0,15 м/с
Теплотехнический расчет ставит перед собой цели определить:
- Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
- Настолько полно обеспечивается комфортный микроклимат внутри здания?
- Обеспечивается ли оптимальная тепловая защита конструкций?
Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.
На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.
Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.
Основные факторы
Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:
Назначение здания: жилое или промышленное.
Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.
Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.
Наличие комнат специального назначения (баня, сауна и пр.).
Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.
Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.
Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.
Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.
Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных — количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.
Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
R=d/λ
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м²;
- Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
124*(22+15)= 4,96 кВт/час
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
4,96+1,11=6,07 кВт/час
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Есть ли бесплатные программы для расчётов?
Чтобы упростить расчет системы отопления частного дома, можно воспользоваться специальными программами. Их, конечно, не так много как графических редакторов, но выбор всё же есть. Одни распространяются бесплатно, другие – в демо-версиях. В любом случае, сделать нужные расчёты один-два раза получится и без материальных вложений.
Программное обеспечение «Oventrop CO»
Бесплатное программное обеспечение «Oventrop CO» предназначено для того, чтобы выполнить гидравлический расчёт отопления загородного дома.
Программа «Oventrop CO» создана для предоставления графической помощи на этапе составления проекта отопления. Она позволяет выполнить гидравлический расчёт и для однотрубной, и для двухтрубной системы. Работать в ней просто и удобно: есть уже готовые блоки, осуществляется контроль над ошибками, огромный каталог материалов
На основе предварительных настроек и подбора отопительных приборов, трубопровода и арматуры можно проектировать новые системы. Помимо этого возможна регулировка существующей схемы. Она осуществляется посредством подбора мощности уже имеющегося в распоряжении оборудования в соответствии с нуждами отапливаемых комнат и помещений.
Оба эти варианта могут сочетаться в данной программе, позволяя регулировать существующие фрагменты и проектировать новые. При любом варианте расчёта «Oventrop CO» подбирает настройки арматуры. В части выполнения гидравлических расчётов у этой программы широкие возможности: от подбора диаметров трубопровода до анализа расхода воды в оборудовании. Все результаты (таблицы, схемы, рисунки) можно распечатать или перенести в среду Windows.
Программное обеспечение «Instal-Therm HCR»
Программа «Instal-Therm HCR» позволяет рассчитать систему радиаторного и поверхностного отопления.
Она поставляется в комплекте InstalSystem TECE, куда входят ещё три программы: Instal-San Т (для проектирования холодного и горячего водоснабжения), Instal-Heat&Energy (для расчёта тепловых потерь) и Instal-Scan (для сканирования чертежей).
Программа «Instal-Therm HCR» снабжена расширенными каталогами материалов (трубы, потребители воды, фитинги, радиаторы, теплоизоляция и запорно-регулирующая арматура). Результаты расчётов выдаются в виде спецификации на предлагаемые программой материалы и изделия. Единственный недостаток пробной версии – невозможно вывести её на печать
Вычислительные возможности «Instal-Therm HCR»: — подбор по диаметру труб и арматуры, а также тройников, фасонных изделий, распределителей, проходных муфт и теплоизоляции трубопровода; — определение высоты подъёма насосов, расположенных в смесителях системы или на участке; — гидравлические и тепловые расчёты отопительных поверхностей, автоматическое определение оптимальной температуры входа (питания); — подбор радиаторов, учитывающий охлаждение в трубопроводах рабочего агента.
Пробной версией можно воспользоваться бесплатно, но она имеет ряд ограничений. Во-первых, как и в большинстве условно-бесплатных программ, результаты распечатать нельзя, равно как и экспортировать их. Во-вторых, в каждом из приложений пакета можно создать только три проекта. Правда изменять их можно сколько угодно. В-третьих, созданный проект сохраняется в модифицированном формате. Файлы с таким расширением ни другая пробная, ни даже стандартная версия не прочитают.
Обследование тепловизором
Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к тепловизионным обследованиям строения.
Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.
Обследование проводится медленно, данные регистрируются тщательно. Схема проста.
Первый этап работ проходит внутри помещения
Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам
Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.
Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.
Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.
20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.
Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.
Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.
Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.
11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.
Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека
Поэтому при первой встрече обратите внимание на нос незнаком