Расчет потери давления в воздуховодах в системе вентиляции и кондиционирования

Поэтапная работа с аэродинамическим расчетом в Excel

Если вам нужно сделать аэродинамический расчет, но вы не готовы просчитывать эти колоссальные формулы вручную, тогда поможет Excel.

  1. Расход воздуха на каждом участке.
  2. Длину каждого из них.
  3. Рекомендуемую скорость. После заполнения, в файле уже будет рассчитано минимальная необходимая площадь сечения.
  4. Ориентируясь по рекомендуемой площади нужно подобрать размер воздуховода. Просто введите высоту и ширину в столбик F и G, как тут же рассчитается скорость на участке и эквивалентный диаметр. В итоге и число Рейнольдса.
  5. Эквивалентная шероховатость вводится также вручную.
  6. На каждом участке необходимо будет посчитать сумму КМС и также занести в таблицу.
  7. Наслаждаться результатом расчетов!

Напомним, аэродинамический расчет в Excel сделан для прямоугольных стальных воздуховодов при температуре подаваемого воздуха 20°С. Если у вас параметры другие, замените значение плотности, шероховатости и вязкости на ваши. Таблица полностью отвечает расчетным формулам и готова к использованию. Успешных вам аэродинамических расчетов!!!

5.8. Коэффициент сопротивления изгибов

Установлено, что скорость воздуха почти не оказывает влияния на величину коэффициента сопротивления. Увеличение радиуса кривизны 90°ного изгиба приводит к уменьшению коэффициента сопротивления. Однако 180°ный изгиб демонстрирует увеличение сопротивления.

Это противоречит всем ожиданиям. Вероятно, это обусловлено незначительной разницей в шероховатости поверхности у данных изгибов, так как степень сжатия у них будет разной. Причиной могут быть и различия в модели потока у этих изгибов. Тип воздуховода, повидимому, оказывает лишь незначительное влияние на коэффициент сопротивления данных изгибов. Этого следовало ожидать. Внутренняя сторона изгиба всегда сжата таким образом, что ее шероховатость гораздо больше шероховатости воздуховода (максимально растянутого).

Нужно ли ориентироваться на СНиП?

Во всех расчетах, которые мы проводили, использовались рекомендации СНиП и МГСН. Эта нормативная документация позволяет определить минимально допустимую производительность вентиляции, обеспечивающую комфортное пребывание людей в помещении. Другими словами требования СНиП направлены в первую очередь на минимизацию стоимости системы вентиляции и затрат на ее эксплуатацию, что актуально при проектировании вентсистем для административных и общественных зданий.

В квартирах и коттеджах ситуация иная, ведь вы проектируете вентиляцию для себя, а не для усредненного жителя и вас никто не заставляет придерживаться рекомендаций СНиП. По этой причине производительность системы может быть как выше расчетного значения (для большего комфорта), так и ниже (для уменьшения энергопотребления и стоимости системы). К тому же субъективное ощущение комфорта у всех разное: кому-то достаточно 30–40 м³/ч на человека, а для кого-то будет мало и 60 м³/ч.

Однако если вы не знаете, какой воздухообмен вам нужен для комфортного самочувствия, лучше придерживаться рекомендаций СНиП. Поскольку современные приточные установки позволяют регулировать производительность с пульта управления, вы сможете найти компромисс между комфортом и экономией уже в процессе эксплуатации системы вентиляции.

Поэтапная работа с аэродинамическим расчетом в Excel

Если вам нужно сделать аэродинамический расчет, но вы не готовы просчитывать эти колоссальные формулы вручную, тогда поможет Excel.

  1. Расход воздуха на каждом участке.
  2. Длину каждого из них.
  3. Рекомендуемую скорость. После заполнения, в файле уже будет рассчитано минимальная необходимая площадь сечения.
  4. Ориентируясь по рекомендуемой площади нужно подобрать размер воздуховода. Просто введите высоту и ширину в столбик F и G, как тут же рассчитается скорость на участке и эквивалентный диаметр. В итоге и число Рейнольдса.
  5. Эквивалентная шероховатость вводится также вручную.
  6. На каждом участке необходимо будет посчитать сумму КМС и также занести в таблицу.
  7. Наслаждаться результатом расчетов!

Напомним, аэродинамический расчет в Excel сделан для прямоугольных стальных воздуховодов при температуре подаваемого воздуха 20°С. Если у вас параметры другие, замените значение плотности, шероховатости и вязкости на ваши. Таблица полностью отвечает расчетным формулам и готова к использованию. Успешных вам аэродинамических расчетов!!!

Какие виды бывают

Существует два способа циркуляции воздуха в системе: естественный и принудительный. Разница в том, что в первом случае прогретый воздух движется в соответствии с законами физики, а во втором — при помощи вентиляторов. По способу воздухообмена устройства делятся на:

  • рециркуляционные — используют воздух непосредственно из помещения;
  • частично рециркуляционные — частично используют воздух из помещения;
  • приточные, использующие воздух с улицы.

Особенности системы Антарес

Принцип работы Антарес комфорт такой же, как и у других систем воздушного отопления.

Воздух нагревается агрегатом АВН и по воздуховодам с помощью вентиляторов распространяется по помещениям.

Назад воздух возвращается по обратным воздуховодам, проходя через фильтр и коллектор.

Процесс циклический и происходит бесконечно. Смешиваясь с тёплым воздухом из дома в рекуператоре, весь поток идёт обратным воздуховодом.

Преимущества:

  • Низкий уровень шума. Все дело в современном немецком вентиляторе. Строение его обратно загнутых лопаток слегка подталкивают воздух. Он не ударяется в вентилятор, а словно обволакивает. Кроме того, предусмотрена толстая звукоизоляция АВН. Совокупность этих факторов делает работу системы почти бесшумной.
  • Скорость прогрева помещения. Обороты вентилятора регулируются, что даёт возможность установить полную мощность и быстро прогреть воздух до желаемой температуры. Уровень шума заметно повысится пропорционально скорости подаваемого воздуха.
  • Универсальность. При наличии горячей воды, система Антарес комфорт способна работать с любым видом обогревателя. Предусмотрена возможность установить и водяной, и электрический нагреватель одновременно. Это очень удобно: при исчезновении одного источника питания, перейти на другой.
  • Ещё одной особенностью является модульность. Это значит, что Антарес комфорт состоит из нескольких блоков, что приводит к снижению веса и простоте в установке и обслуживании.

При всех достоинствах, Антарес комфорт не имеет недостатков.

Volcano или Вулкан

Соединённые вместе водный калорифер и вентилятор — так выглядят отопительные агрегаты польской фирмы Volkano. Работают они от воздуха в помещении и не используют уличного.

Фото 2. Прибор от производителя Volcano предназначенный для воздушных систем отопления.

Нагретый тепловым вентилятором воздух равномерно распределяется через предусмотренные жалюзи в четырёх направлениях. Специальные датчики поддерживают нужную температуру в доме. Отключение происходит автоматически, когда в работе агрегата нет необходимости. На рынке представлено несколько моделей тепловых вентиляторов Volkano разных типоразмерах.

Особенности воздушно-отопительных агрегатов Volkano:

  • качество;
  • доступная цена;
  • бесшумность;
  • возможность установки в любом положении;
  • корпус из износостойкого полимера;
  • полная готовность к монтажу;
  • три года гарантии;
  • экономичность.

Отлично подойдёт для обогрева заводских цехов, складов, больших магазинов и супермаркетов, птицефабрик, больниц и аптек, спорткомплексов, теплиц, гаражных комплексов и церквей. В комплекте идут схемы подключения, позволяющие сделать монтаж быстрым и лёгким.

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции.

  1. В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  2. По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  3. Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  4. Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.
  5. Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Замечания:

  1. Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды.
  2. Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Размеры150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455505550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Официальный веб-сайт VENTS ®

  • Каталог продукции
    • Меню
    • Бытовые вентиляторы

      • Меню
      • Интеллектуальные вентиляторы
      • Осевые энергосберегающие вентиляторы с низким уровнем шума
      • Осевые канальные вентиляторы
      • Осевые настенные и потолочные вентиляторы
      • Осевые декоративные вентиляторы
      • Вентиляторы со светом
      • Осевые оконные вентиляторы
      • Центробежные вентиляторы
      • DESIGN CONCEPT: дизайнерские решения для бытовой вентиляции
      • Art-Deco: декоративные дизайнерские решетки
      • Принадлежности для бытовых вентиляторов
    • Промышленные и коммерческие вентиляторы

      • Меню
      • Вентиляторы для круглых каналов
      • Вентиляторы для прямоугольных каналов
      • Специальные вентиляторы
      • Шумоизолированные вентиляторы
      • Центробежные вентиляторы
      • Осевые вентиляторы
      • Крышные вентиляторы
    • Децентрализованные системы вентиляции с рекуперацией тепла

      • Меню
      • Комнатные реверсивные установки ТвинФреш
      • Комнатные установки Микра
      • Децентрализованные установки ДВУТ
    • Воздухообрабатывающие установки

      • Меню
      • Приточные и вытяжные установки
      • Приточно-вытяжные установки с рекуперацией тепла
      • Воздухообрабатывающие агрегаты AirVENTS
      • Энергосберегающие канальные установки Х-VENT
      • Геотермальные вентиляционные системы
    • Системы воздушного отопления

      • Меню
      • Воздушно отопительные (охладительные) агрегаты
      • Воздушно-тепловые завесы
      • Дестратификаторы
    • Дымоудаление и вентиляция

      • Меню
      • Крышные вентиляторы дымоудаления
      • Канальные вентиляторы дымоудаления
      • Осевые вентиляторы дымоудаления
      • Клапаны противопожарные дымовые
      • Клапаны противопожарные огнезадерживающие
      • Системы вентиляции крытых парковок
    • Принадлежности для систем вентиляции

      • Меню
      • Сифон гидравлический
      • Шумоглушители
      • Фильтры
      • Клапаны и заслонки
      • Дверцы ревизионные
      • Гибкие вставки
      • Хомуты
      • Пластинчатые рекуператоры
      • Смесительные камеры
      • Клапан противопожарный ПЛ-10
      • Водяные нагреватели
      • Электрические нагреватели
      • Водяные охладители
      • Фреоновые охладители
      • Смесительные узлы
      • Регуляторы расхода воздуха
      • Кухонные вытяжные зонты
      • Дренажные насосы
      • Каплеуловители
      • Зонды измерения расхода воздуха
    • Электрические принадлежности

      • Меню
      • Блоки управления бытовыми вентиляторами
      • Регуляторы скорости
      • Регуляторы температуры
      • Регуляторы мощности электрических нагревателей
      • Датчики
      • Трансформаторы
      • Дифференциальное реле давления
      • Термостаты
      • Электроприводы
      • Коммуникационное оборудование
      • Панели управления
    • Воздуховоды и монтажные элементы

      • Меню
      • Система ПВХ каналов “ПЛАСТИВЕНТ”
      • Соединительно-монтажные элементы
      • Система складывающихся круглых и плоских ПВХ каналов “ПЛАСТИФЛЕКС”
      • Гибкие воздуховоды для систем вентиляции, кондиционирования, отопления
      • Воздуховоды для систем вентиляции, отопления и кондиционирования
      • Спирально-навивные воздуховоды
      • Полужесткие каналы FlexiVent
      • Общая информация о воздуховодах
    • Воздухораспределительные устройства

      • Меню
      • Решетки
      • Диффузоры
      • Анемостаты
      • Колпаки
      • Аксессуары к воздухораспределительным устройствам
      • DESIGN CONCEPT: дизайнерские решения для бытовой вентиляции
      • Art-Deco: декоративные дизайнерские решетки
    • Вентиляционные наборы и проветриватели

      • Меню
      • Наборы вентиляционные
      • Стеновые проветриватели
      • Оконные проветриватели
  • Подбор оборудования
  • Центр загрузок
    • Меню
    • Центр загрузок
    • Каталоги
    • Учебное пособие по вентиляции
  • Сервисная служба
  • Контакты
    • Меню
    • Наши контакты
    • Наши партнёры
    • Объекты с нашим оборудованием
  • Карьера
  • О компании
    • Меню
    • Производство
    • Инновации и технологии
    • Объекты с нашим оборудованием
    • Международные ассоциации
  • Политика конфиденциальности
  • Условия использования сайта
  • Советы по вентиляции
    • Меню
    • Определение необходимости воздухообмена помещений. Рекомендации к проектированию
    • Что такое потеря давления?
    • Типы вентиляторов
    • Регулировка скорости вращения вентиляторов
    • Электродвигатели вентиляторов
    • Общие рекомендации для монтажа
    • Шумовые характеристики вентиляторов
    • Что такое IP ?
  • Прайс-лист

Правила определения скорости воздуха в воздуховоде

При увеличении диаметра труб скорость воздуха снижается и давление падает

Скорость потока воздуха в вентиляции напрямую связана с уровнем вибрации и шума в системе. Эти показатели необходимо учитывать при поведении вычисления. Движение массы воздуха создает шум, интенсивность которого зависит от количества изгибов труб. Большую роль играет и сопротивление: чем оно будет выше, тем ниже будет скорость движения воздушных масс.

Нормы уровня шума

На основании санитарных норм в помещениях устанавливаются максимально возможные показатели звукового давления.

Превышение перечисленных параметров возможно только в исключительных случаях, когда нужно подсоединить к системе дополнительное оборудование.

Уровень вибрации

Уровень шума и вибраций зависит от внутренней поверхности трубы

Во время работы любого вентиляционного устройства производится вибрация. Ее показатели зависят от материала, из которого изготовлен воздуховод.

Максимальная вибрация зависит от нескольких показателей:

  • качества прокладок, которые предназначены для снижения уровня вибрации;
  • материала изготовления труб;
  • размера воздуховода;
  • скорости воздушного потока.

Общие показатели не могут быть выше установленных санитарными нормами.

Кратность воздухообмена

Очистка воздушных масс происходит за счет воздухообмена, он разделяется на принудительный и естественный. Во втором случае он достигается при помощи открывания окон, форточек, в первом через установку вентиляторов и кондиционеров.

Для оптимального микроклимата смена воздуха должна происходить не реже раза в час. Количество таких циклов носит название кратность воздухообмена. Ее необходимо определить, чтобы установить скорость движения воздуха в вентиляционном канале.

Таблица коэффициентов местного сопротивления

Мы проанализировали техническую литературу и другие источники и предоставляем вам для пользования таблицы со значениями КМС для разных элементов системы. В нашем случае это каталоги фирмы ВЕЗА, Belimo, справочник проеткировщика Н,Н, Павлова и справочник Р. В. Щекина.

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ- водственных и общественных зданий“. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета — от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2 ) поперечного сечения прямоугольного воздуховода:

Рекомендуемую скорость принимают следующей:

в начале системывблизи вентилятора
Административные здания45 м/с812 м/с
Производственные здания56 м/с10/16 м/с

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: DCT или (а х b)ст (м).

Рис. 1. Аксонометрическая схема воздуховода

Фактическая скорость (м/с):

или

Гидравлический радиус прямоугольных воздуховодов (м):

Критерий Рейнольдса:

(для прямоугольных воздуховодов Dст=DL).

Коэффициент гидравлического трения:

λ=0,3164 × Re-0,25 при Re≤60000,

λ=0,1266 × Re-0,167 при Re 3 /ч

длина L, мυрек, м/ссечение а × b, мυф, м/сDl,мReλKmcпотери на участке Δр, па
решетка рр на выходе0,2 × 0,43,11,810,4
17204,240,2 × 0,254,00,222569000,02050,488,4
210303,050,25× 0,254,60,25737000,01950,48,1
321302,760,4 × 0,255,920,3081169000,01800,4813,4
4348014,870,4 × 0,46,040,401549000,01721,4445,5
568301,280,5 × 0,57,60,502340000,01590,28,3
6104206,4100,6 × 0,59,650,5453370000,01510,6445,7
104200,8ю.Ø0,648,990,643690000,01490,9
7104203,250,53 × 1,065,150,7072340000,0312 ×n2,544,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет
Примечание. Для кирпичных каналов с абсолютной шероховатостью 4 мм и υф = 6,15 м/с, поправочный коэффициент n = 1,94 ( 32 , табл. 22.12.)

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из . Материал воздухозаборной шахты — кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

Sс = L * 2,778 / V, где

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455505550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 4. Потери давления в диффузорах
Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Чтобы определиться с размерами сечений на любом из отрезков воздухораспределительной системы, необходимо произвести аэродинамический расчет воздуховодов. Показатели, полученные при таком расчёте, определяют работоспособность как всей проектируемой системы вентиляции, так и отдельных её участков.

Для создания комфортных условий в кухне, отдельной комнате или помещении в целом необходимо обеспечить правильную проектировку воздухораспределительной системы, которая состоит из множества деталей

Важное место среди них занимает воздуховод, определение квадратуры которого оказывает влияние на значение скорости воздушного потока и шумность вентиляционной системы в целом. Определить эти и ряд других показателей позволит аэродинамический расчет воздуховодов

Коэффициент местного сопротивления

Сначала дадим определение коэффициенту местного сопротивления. Местными сопротивлениями называются называют точечные потери напора, связанные с изменением структуры потока. В вентиляции существует множество составляющих, что играют роль местного сопротивления:

  • поворот воздуховода,
  • сужение или расширение потока,
  • вход воздуха в воздухозаборную шахту;
  • «тройник» и «крестовина»;
  • приточные и вытяжные решетки и воздухораспределители;
  • воздухораспределители;
  • диффузор;
  • заслонки и т.д.

Их КМС рассчитываются по определенным формулам, а затем они участвуют в определении местных потерь давления. В математическом понятии коэффициент местных потерь — это отношение потерь известного напора в местном сопротивлении к скоростному напору.

Коэффициент местного сопротивления зависит от формы и вида местного сопротивления, шероховатости воздуховода и как ни странно от числа Рейнольдса. Для заслонок и другой запорной арматуры к перечисленному додается еще степень открытия.

Связанность КМС с числом Рейнольдса выражается в формуле

Значения коэффициентов В

для некоторых местных сопротивлений

Чем больше число Rе тем меньше от него зависит коэффициент. Полная независимость коэффициента местного сопротивления от числа Rе в вентиляционной системе происходит для резких переходов при Rе > 3000, а для плавных переходов — при Rе > 10000.

На практике же времени особо для расчета КМС нету, поэтому проектировщики пользуются таблицами со справочников и других источников. Тем более зачем тратить кучу времени на поиски формул и расчеты, если это уже сделали за вас. Многие производители шумоглушителей , клапанов и решеток с удовольствием указывают значение коэффициента местного сопротивления в каталогах. Но, конечно, уж если совсем никаких данных не нашли, тогда нужно прибегнуть к математике.

Потеря давления в системе 24.02.2015 08:43

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором или приточной установкой. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий