Разновидности труб для вентиляции
Основная задача вентиляционной системы – отвод загрязненного воздуха из помещения.
Эффективность и надежность всей системы зависит от выбора типа вентиляционной трубы.
- минимальный диаметр трубы для вентиляции в частном доме должен составлять 15 см;
- поверхности воздуховода должны быть устойчивы к коррозии;
- вес конструкции влияет на сложность монтажных работ и обслуживание;
- размер сечения воздуховода влияет на пропускную способность;
- все элементы системы должны соответствовать требованиям пожарной безопасности.
Важным критерием выбора вентиляционной трубы является материал, из которого она изготавливается. Ниже рассмотрены самые популярные из них.
Пластиковые трубы
Пластиковые воздуховоды производятся из полипропилена, полиуретана и поливинилхлорида. Они отличаются большим разнообразием форм и размеров, наиболее популярными являются круглые и прямоугольные.
Данные типы труб получили широкое распространение благодаря целому ряду достоинств.
Преимущества круглых и прямоугольных пластиковых воздуховодов:
- относительно небольшой вес, благодаря чему монтаж системы может осуществляться одним человеком, кроме того, не создается избыточная нагрузка на подвесные кухонные конструкции;
- низкая уязвимость для воздействия влаги и химических веществ;
- хорошая герметичность;
- простота в обслуживании;
- широкий диапазон рабочих температур;
- низкий уровень шума при работе;
- большой срок службы;
- эстетичный вид;
- экологичность;
- устойчивость к появлению коррозии.
К недостаткам пластиковых труб можно отнести необходимость использовать дополнительные соединительные элементы при монтаже, а также то, что сам процесс установки достаточно сложный и требует специальной подготовки.
Гофрированные трубы
Самым дешевым вариантом для вентиляционной системы является гофрированная труба. Она состоит из металлических колец, обернутых ламинированной фольгой.
В изначальном состоянии кольца плотно прилегают друг к другу, но в процессе монтажа расстояние между ними способно увеличиваться за счет растягивания оболочки, а сама труба может вытягиваться и изгибаться под нужным углом.
Этими свойствами объясняется универсальность труб при монтаже: они легко устанавливаются в самых труднодоступных местах, а весь процесс не вызывает особой сложности.
Важно помнить! При неполном растяжении гофрированной трубы, а также сильном изгибе появляется дополнительное сопротивление потоку воздуха, что вызывает характерный шум.
Основные преимущества гофрированных воздуховодов:
- срок службы — до 50 лет;
- допустимое нагревание поверхностей — до 250 °С;
- устойчивость к воздействию влаги и коррозии;
- относительно легкий монтаж.
Металлические воздуховоды
Материалом для изготовления металлических вентиляционных труб служит оцинкованная или нержавеющая сталь. Они устойчивы к появлению ржавчины и имеют небольшой вес.
Такой тип воздуховода стоит выбирать для установки в помещениях с повышенным содержанием влаги и большими колебаниями температур.
Для монтажа металлических вентиляционных труб достаточно минимальных знаний и навыков.
Тканевые воздуховоды
Воздуховод такого типа представляет собой вентиляционный канал, сделанный из ткани, закрепленный с помощью специальных колец на потолке. За счет давления воздуха, проходящего внутри, конструкции придается форма трубы.
Материалом для изготовления служат полиамид, полиэстер или полиэфир. Тканевые воздуховоды встречаются достаточно редко и изготавливаются на заказ. Для проектировки потребуется опытный специалист.
Основные преимущества:
- быстрый монтаж;
- небольшой вес;
- отсутствие конденсата;
- низкий уровень шума;
- устойчивость к коррозии;
- удобство в обслуживании.
Помимо материала, при подборе и расчете воздуховода необходимо учитывать форму сечения. Большей популярностью пользуются круглые трубы, они оказывают меньшее сопротивление потоку проходящего воздуха.
Прямоугольные трубы не нарушают эстетичный вид помещения, их можно монтировать вплотную к стене.
Гофрированные и тканевые воздуховоды бывают только круглыми в сечении, пластиковые и металлические могут быть и круглой, и прямоугольной формы.
Размеры сечения рассчитываются по специальной формуле для каждого конкретного помещения. На практике часто встречаются диаметры 100-120 мм для круглых труб и размеры 55×110, 60×122 – для прямоугольных.
Насколько точная сумма отображается
Калькулятор выдает примерную стоимость реализации, а точная рассчитывается после создания сметы. Сперва к вам приезжает замерщик, исследует помещение. Он сохраняет нижеуказанные данные:
- Материал стен;
- Тип потолка, пола;
- Размеры комнат и подсобных узлов;
- Аэродинамические свойства объекта;
- Состояние воздуха на территории;
- Тип предприятия.
Составление сметы:
перед ней реализуется монтажная схема, учитывающая основные параметры. Тут же производятся финальные расчеты вентиляции, на основе которых изготавливается смета. В ней прописываются все материалы, детали вплоть до крепежа.
Полезно знать: специалист на объект выезжает бесплатно.
В завершение проводится согласование с заказчиком. Проект переходит в последнюю стадию, подразумевающую оформление бумаг по ГОСТам.
Полученная в калькуляторе сумма способна измениться как в большую, так и в меньшую сторону после проведения всех замеров.
Полезно знать: в СаНПин точно указываются допустимые нормы воздухообмена, а также максимальные показатели для вредных веществ в окружении. Помимо СНиПов под номерами 2.04.05-91 и 41-01-2003, существуют и санитарные стандарты. Сегодня это ГН 2.2.5.3532-18.
Расчет воздуховодов вентиляции
При устройстве системы вентиляции важно правильно подобрать и определить параметры всех элементов системы. Необходимо найти требуемое количество воздуха, подобрать оборудование, рассчитать воздуховоды, фасонные элементы и другие комплектующие вентиляционной сети
Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее
Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее.
Воздуховоды необходимо рассчитывать с двух точек зрения. Во-первых, подбирается необходимое сечение и форма. При этом необходимо учитывать количество воздуха и другие параметры сети. Также уже при изготовлении рассчитывается количество материала, например, жести, для изготовления труб и фасонных элементов. Такой расчет площади воздуховодов позволяет заранее определить количество и стоимость материала.
Типы воздуховодов
Для начала пару слов скажем и материалах и типах воздуховодов
Это важно из-за того, что в зависимости от формы воздуховодов существуют особенности его расчета и выбора площади поперечного сечения. Также важно ориентироваться и на материал, так как от него зависит особенности движения воздуха и взаимодействие потока со стенками
Если коротко, то воздуховоды бывают:
Если коротко, то воздуховоды бывают:
- Металлические из оцинкованной или черной стали, нержавейки.
- Гибкие из алюминиевой или пластиковой пленки.
- Жесткие пластиковые.
- Тканевые.
По форме воздуховоды изготовливаются круглого сечения, прямоугольного и овального. Наиболее часто используются круглые и прямоугольные трубы.
Большая часть из описанных воздуховодов изготовливаются в заводских условиях, например, гибкие из пластика или тканевые, и изготовить их на объекте или в небольшой мастерской сложно. Большая часть изделий, которым требуется расчет, производят из оцинкованной стали или нержавейки.
Из оцинкованной стали изготовляются как прямоугольные, так и круглые воздуховоды, причем для производства не требуется особо дорогостоящее оборудование. В большинстве случаев достаточно гибочного станка и устройства для изготовления круглых труб. Не считая мелкого ручного инструмента.
Расчет поперечного сечения воздуховода
Основная задача, которая возникает при расчете воздуховодов – это выбор поперечного сечения и формы изделия. Этот процесс проходит при проектировании системы как в специализированных компаниях, так и при самостоятельном изготовлении. Необходимо провести расчет диаметра воздуховода или сторон прямоугольника, выбрать оптимальное значение площади поперечного сечения.
Расчет поперечного сечения проводят двумя способами:
- допустимых скоростей;
- постоянной потери давления.
Метод допустимых скоростей проще для неспециалистов, поэтому рассмотрим в общих чертах его.
Расчет сечения воздуховодов методом допустимых скоростей
Расчет сечения воздуховода вентиляции методом допустимых скоростей базируется на нормированной максимальной скорости. Скорость выбирается для каждого типа помещения и участка воздуховода в зависимости от рекомендуемых значений. Для каждого типа здания существуют максимально допустимые скорости в магистральных воздуховодах и ответвлениях, выше которых использование системы затруднено из-за шума и сильных потерь давления.
Рис. 1 (Схема сети для расчета)
В любом случае, перед началом расчета необходимо составить план системы. Для начала необходимо рассчитать требуемое количество воздуха, которое нужно подать и удалить из помещения. На этом расчете будет базироваться дальнейшая работа.
Сам процесс расчета сечения методом допустимых скоростей упрощенно состоит из таких этапов:
- Создается схема воздуховодов, на которой отмечаются участки и расчетное количество воздуха, которое будет по ним транспортироваться. Лучше на ней же указать все решетки, диффузоры, изменения сечения, повороты и клапаны.
- По подобранной максимальной скорости и количеству воздуха рассчитывается сечение воздуховода, его диаметр или размер сторон прямоугольника.
- После того, как известны все параметры системы, можно подобрать вентилятор необходимой производительности и напора. Подбор вентилятора базируется на расчете падения давления в сети. Это существенно сложнее, чем просто подобрать сечение воздуховода на каждом участке. Этот вопрос мы рассмотрим в общих чертах. Так как иногда просто подбирают вентилятор с небольшим запасом.
Для расчета необходимо знать параметры максимальной скорости воздуха. Их берут из справочников и нормативной литературы. В таблице приведены значения для некоторых зданий и участков системы.
Расчет воздуховодов или проектирование систем вентиляции
В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.
Расчет площади сечения воздуховодов
После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.
Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.
При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.
Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.
Площадь сечения воздуховода определяется по формуле:
Sс = L * 2,778 / V, где
Sс — расчетная площадь сечения воздуховода, см²;
L — расход воздуха через воздуховод, м³/ч;
V — скорость воздуха в воздуховоде, м/с;
2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
S = π * D² / 400 — для круглых воздуховодов,
S = A * B / 100 — для прямоугольных воздуховодов, где
S — фактическая площадь сечения воздуховода, см²;
D — диаметр круглого воздуховода, мм;
A и B — ширина и высота прямоугольного воздуховода, мм.
Расчет сопротивления сети воздуховодов
После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.
Для расчета сопротивления участка сети используется формула:
Где R – удельные потери давления на трение на участках сети
L – длина участка воздуховода (8 м)
Еi – сумма коэффициентов местных потерь на участке воздуховода
V – скорость воздуха на участке воздуховода, (2,8 м/с)
Y – плотность воздуха (принимаем 1,2 кг/м3).
Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.
В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:
Этап первый
Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.
Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.
Формирование схемы
Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.
Здесь следует определиться с магистралью – основной линией исходя из которой проводятся все операции. Она представляет собой цепь последовательно соединённых отрезков, с наибольшей нагрузкой и максимальной протяжённостью.
Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная
Приточная
Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.
Вытяжная
Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.
Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.
Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:
- воздуховод единого размера сечения;
- из одного материала;
- с постоянным потреблением воздуха.
Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.
Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.
Определение размерных величин сечений воздуховодов
Производится исходя из таких показателей, как:
- потребление воздуха на отрезке;
- нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.
Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.
Виды труб для вентиляции
Трубы, как правило, классифицируют по следующим параметрам:
По форме:
- круглое сечение (спирально-навивные, прямошовные);
- прямоугольное сечение;
- нестандартного сечения (комбинированные, обрезанные, усечённые)
По материалу:
- из алюминия;
- из оцинкованной стали;
- из нержавеющей стали;
- из пластика (поливинилхлоридные, полиуретановые, полипропиленовые);
- из полиэфирной ткани.
Пластиковые трубы для вентиляции
Трубы из пластика в целом имеют ряд несомненных достоинств:
- стойкость к воздействию влажных и агрессивных сред;
- не подверженность коррозии;
- полная герметичность;
- эстетичность;
- небольшой вес;
- низкая стоимость;
- нетоксичность;
- унифицированность изделий.
Подвиды же пластиковых труб для вентиляции имеют в свою очередь следующие преимущества:
- Поливинилхлоридные:
- устойчивы к воздействию ультрафиолетового излучения;
- простота монтажа.
- Полиуретановые:
- значительная степень гибкости;
- долговечность;
- устойчивы к химическому воздействию.
- Полипропиленовые:
- высокая прочность;
- стойкость к воздействию агрессивных сред;
- срок службы более 25 лет.
По своим свойствам трубы из пластика во многом превосходят трубы из альтернативных материалов. Так, например, имеют существенный недостаток в виде накопления избыточного статического напряжения в системе вентиляции. Пластик подобных недостатков не имеет.
Но ничто не идеально. Пластик, как и любой другой материал, имеет свои “слабые места”. К таким относится уязвимость к действию высоких температур и открытому пламени.
Оцинкованные трубы для вентиляции
Оцинкованные трубы для вентиляции
Применение оцинкованных труб наиболее рационально в следующих условиях:
- температура перемещаемого воздуха не выше 80 градусов по Цельсию;
- влажность меньше 60%.
Игнорирование этих условий приводит к повреждению защитного слоя, отслаиванию цинка.
Наиболее значимыми преимуществами изделий считают:
- небольшой вес конструкции;
- низкая стоимость;
- простота монтажа;
- несложная эксплуатация.
Недостатками являются ограниченное применение и накопление в процессе эксплуатации статического электричества.
Гофрированные трубы
Гофрированные трубы для вентиляции
Данный вид вентиляционных труб производится, как правило, из алюминия или стали, что позволяет применять подобные трубы в условиях действия очень высоких температур (вплоть до 900 градусов по Цельсию). Помимо этого гофрированные трубы не склонны накапливать статическое электричество и довольно эстетичны.
В целом устраняя недостатки оцинкованных и пластиковых труб для вентиляции, гофрированные тем не менее не смогли избежать одного существенного минуса: их внутренняя поверхность, не являющаяся достаточно гладкой, создаёт дополнительное аэродинамическое сопротивление.
Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналов
Итак, найден объем воздуха, который должен поступить помещения квартиры в течение часа и, соответственно, выведен за это же время.
Далее, исходят их количества вытяжных каналов, имеющихся (или планируемых к организации – при проведении самостоятельного строительства) в квартире или доме. Полученный объем необходимо распределить между ними.
Для примера, вернемся к таблице выше. Через три вентиляционных канала (кухня, санузел и ванная) необходимо отвести 240 кубометров воздуха в час. При этом из кухни по расчетам должно отводиться не менее 125 м³, из ванной и туалета по нормативам – не менее, чем по 25 м³. Больше – пожалуйста.
Поэтому напрашивается такое решение: кухне «отдать» 140 м³/час, а оставшееся — разделить поровну между ванной и санузлом, то есть по 50 м³/час.
Ну а зная объем, который необходимо отвести в течение определённого времени – несложно подсчитать ту площадь вытяжного канала, которая гарантированно справится с задачей.
Правда, для расчетов требуется еще и значение скорости воздушного потока. А она тоже подчиняется определённым правилам, связанным с допустимыми уровнями шума и вибрации. Так, скорость потока воздуха на вытяжных вентиляционных решетках при естественной вентиляции должна быть в пределах диапазона 0,5÷1,0 м/с.
Приводить формулу расчета здесь не будем – сразу предложим читателю воспользоваться онлайн-калькулятором, который определит требуемую минимальную площадь сечения вытяжного канала (отдушины).
Калькулятор расчета минимальной площади сечения вентиляционной отдушины
Обладая элементарными знаниями в геометрии, полученную площадь несложно привести к размерам прямоугольника. Правда, при этом должно соблюдаться условие – соотношение длинной и короткой стороны – не более, чем 3:1.
Нередко вентиляционные решетки имеют и круглое окно. Значит, необходимо пересчитать площадь сечения в диаметр. Или же требуется сделать переход от прямоугольного сечения на круглое. В обоих случаях будет полезен третий калькулятор, предназначенный специально для такой цели.
Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольного
Полученное значение будет ориентиром при приобретении стандартных деталей с круглым сечением. Естественно, округление при этом делается в бо́льшую сторону.