Электричество из воздуха своими руками

Метод получения электричества по Белоусову

Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.

На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:

Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.

Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.

Наверняка вы не знаете:

Электричество из земли своими руками

Тем не менее многие люди не оставляют попыток извлечь электричество из земли, чтобы облегчить или изменить свою жизнь, и их не стоит останавливать, ведь самые важные открытия в истории человечества совершались именно упорными людьми, влюбленными в свои идеи.

Переменный ток, благодаря которому в квартирах питаются все электрические приборы, поступает в жилища через два проводника: ноль и фазу. Из-за заземления большое количество энергии уходит в почву. Конечно, никому не хочется платить за то, что не удается использовать полностью. Поэтому предприимчивые люди уже давно поняли, как при помощи нулевого провода можно извлекать из земли энергию.

Этот способ основан на том, что земля в силу своих физических свойств является одновременно накопителем энергии и ее проводником.

Схема подземной прокладки кабеля

Чтобы извлечь электричество, нужно создать простейшую цепь.

  • На достаточном расстоянии в землю вкапывается два металлических кола, один из которых является катодом, а второй – анодом, в результате чего появится энергия напряжением от 1 до 3 В. Сила тока в этом случае будет ничтожно малой.
  • Чтобы увеличить напряжение и силу тока, придется на участке с огромной площадью вбить множество штырей, как последовательно, так и параллельно соединенных между собой. Последовательное соединение повышает напряжение, а параллельное – силу тока.
  • Когда напряжение достигнет 20-30 В, к цепи необходимо подключить простейший трансформатор для увеличения напряжения при выходе и аккумулятор для накопления и стабилизации электрической энергии. Последний этап – трансформация постоянного тридцати вольтажного тока в переменный, напряжением в 220 В.

Цинковый и медный электрод

Это самый простой, дешевый и эффективный на данный момент способ получения электрической энергии, именно по этому принципу устроены привычные всем батарейки.

Первым делом необходимо изолировать какое-то количество почвы, чтобы создать в ней максимально кислую среду. Затем подключить к этой изолированной земле цинковый и медный электроды. На выходе действительно получается электроэнергия. Этот принцип получения энергии во многом зависит от качества почвы – чем она кислее, тем лучше.

Аккумулятор из цинка и меди

Можно провести интересный эксперимент, поместив два ключа – медный и железный – в апельсин. В результате появляется напряжение до 1 В. Решающим фактором является площадь электродов, соприкасающихся с кислотой, и уровень кислотности самого апельсина.

Этого количества энергии хватает на зарядку простого телефона. Чтобы увеличить мощность, необходимо параллельно подключить к этой схеме еще несколько таких же цепей. В результате получится зарядить смартфон или ноутбук, но под электростанцию из апельсинов и электродов придется выделить огромное помещение.

Этот метод получения энергии хороший, но не надежный и не долговечный: как только начнется окисление цинковых и медных электродов, начнет падать напряжение, а затем прекратится поступление энергии. Исправить положение может счистка окиси и добавление кислоты.

Потенциал между крышей и землей

В земле устанавливается металлический штырь, от него к крыше протягивается провод, получившейся электрической энергией можно спокойно пользоваться.

Правда, только до первой грозы, ведь по сути – это настоящий проводник.

В лучшем случае пострадают проводка и электроприборы, в худшем возникнет угроза жизни обитателей дома.

Простые схемы

Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку

Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать. Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны

Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач

Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.

При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.

Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.

https://youtube.com/watch?v=gEs7AhRDldY

Среди плюсов вышеописанной схемы следует выделить:

  1. Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
  2. Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.

Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.

Тюнинг панели на «классике»

Классические модели ВАЗ все еще пользуются популярностью среди автолюбителей, но развитое автомобилестроение не дает в полную меру наслаждаться тем минимумом, что имеется у жигулей.

Тюнинг приборной панели Ваз 2107 также можно произвести своими руками.

Усовершенствование приборки «семерки» может включать в себя:

  • Изменение типа и цвета подсветки.
  • Модернизация или изменение цвета торпеды.
  • Установка накладки на панель.

И это тоже далеко не все. Обратившись в квалифицированный автосервис, вы сможете получить качественную услугу по ремонту и усовершенствованию своего транспортного средства.

Цены на тюнинг панели приборов ВАЗ сильно варьируются и зависят от модели авто, качества материалов, работы и желаемого результата.

Электрический ток в атмосфере.

Рис. 2. Унитарная вариация напряжённости электрического поля.

Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = Eλ, со средней плотностью, равной около (2—3)·10-12 а/м2. Таким образом, в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е ≈ 0,37 от своего первоначального значения, равно ~ 500 сек. Так как заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» атмосферного электричества, заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.

«Генераторы» атмосферного электричества.

«Генераторами» атмосферного электричества в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний, всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов ρ ≈ 3 10-12 к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12 а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около — (0,01—0,1) а, а ближе к экватору до — (0,5—1,0) а. Сила токов, текущих в самих этих облаках, в 10—100 раз больше силы токов, притекающих к Земле. Таким образом, гроза в электрическом отношении подобна короткозамкнутому генератору.

При высоких значениях электрического поля у земной поверхности порядка 500—1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (так называемые огни святого Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.

Таким образом, электрическое поле Земли и ток Земля — атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Электричество от самодельных элементов питания

Электроэнергию можно получить от импровизированных батареек, собранных буквально «на коленке». Как известно любая батарея использует в своей основе заряженные частицы образующиеся в процессе взаимодействия металлов, помещенных в токопроводящую жидкость.

Достаточно взять две пластины различных металлов, например, цинка и меди, и поместить их в стаканчик с водой, а затем замкнуть эту цепь, используя в качестве нагрузки светодиодную лампу. Такая конструкция позволит вам получить порядка 0,8 В.

Причем это напряжение не будет зависеть от площади пластин.

Если подсоединить несколько таких пар пластин последовательно, то вы получите довольно емкую батарею, которой хватит на работу хорошего светодиодного фонаря.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Электричество из земли по Белоусову: схема оборудования и рекомендации по сборке

Свое видение проблемы получения электроэнергии из земли предложил Валерий Белоусов, известный в научных кругах специалист по изучению молний и технологий предотвращения ее воздействия на планету. Его усилиями была создана система защиты от опасного атмосферного явления, надежность которой оценили мировые эксперты. Белоусов уже написал и выпустил несколько научных трудов, посвященных вопросу поглощения электричества недрами земли и путей его возможного извлечения.

Предложение Белоусова заключается в применении схемы двойного заземления. С ее помощью удастся извлекать из грунта неограниченное количество электрической энергии для подключения бытовых потребителей. Согласно разработке Белоусова, заземляющий контур пассивного типа без активатора принимает в первом полупериоде односторонний разряд. При переходе во второй полупериод заряд возвращается в грунт. Можно описать данный метод как создание буфера электрического обмена, на роль которого подойдет любая металлическая конструкция, например, труба, проведенная в квартиру.

Собрать устройство по получению электричества из земли по Белоусову можно следующим образом:

  • Для пропуска волновых частот на контур пассивного типа устанавливается трансформаторная катушка. Ее основная задача – блокировка высокочастотных разрядов. Возможно применение любой подходящей катушки, которую в целях безопасности дополняют несколькими витками изолированного провода.
  • Выполняется разводка: один конец провода крепится к поверхности трубы, играющей роль пассивного контура, а другой фиксируется на конденсаторе. Результат такого решения – подача и возврат волновых колебаний с одновременной блокировкой цепи, в которую не должен попасть переменный ток.
  • В промежуточном разрыве необходимо установить два конденсатора. «Плюсы» элементов смотрят друг на друга. Это служит объединяющим фактором для всех процессов в цепи, которые должны выполнять роль единого конденсатора.
  • К обмотке конденсатора в схеме электричества Белоусова подсоединяют лампу на 220 В. Если все элементы цепи соединены верно, она замигает, указывая на обратно-поступательное движение волновых колебаний.

Увидеть процесс наглядно можно в следующем видеосюжете:

По словам Белоусова, подобный опыт наглядно демонстрирует наличие в цепи сразу нескольких видов энергии. Одна из них, не являющаяся по своей природе электрической, названа «белой». Подобно листу чистой бумаги такая энергия открывает перед человечеством новые горизонты по использованию полезных энергоресурсов. На нее можно «наложить» любой процесс, благодаря которому вероятно даже открытие новых законов физики. Белоусов уверен: все энергии на планете действуют по своим «персональным» правилам, но неизменно подчиняются правилам единого пространства, в пределах которого находятся их источники.

Способы добычи энергии из земли

Не секрет, что легче всего добывать электричество из твердой и влажной среды. Самым популярным вариантом является почва, в которой сочетается и твердая, и жидкая, и газообразная среда. Между мелкими минералами содержатся капли воды и пузырьки воздуха. К тому же в почве присутствует еще одна единица — мицелла (глинисто-гумусовый комплекс), которая является сложной системой с разницей потенциалов.

Если внешняя оболочка создает отрицательный заряд, то внутренняя — положительный. Мицеллы с отрицательным зарядом притягивают к верхним слоям ионы с положительным. В результате в почве постоянно осуществляются электрические и электрохимические процессы.

Учитывая тот факт, что в почве содержатся электролиты и электричество, ее можно рассматривать не только как место для развития живых организмов и выращивания урожая, но и как компактную электростанцию. Большинство помещений концентрирует в эту оболочку внушительный электрический потенциал, который подается с помощью заземления.

В настоящее время используется 3 способа добычи энергии из почвы в домашних условиях. Первый заключается в таком алгоритме: нулевой провод — нагрузка — почва. Второй подразумевает использование цинкового и медного электрода, а третий задействует потенциал между крышей и землей.

Следующий способ базируется на получении энергии только из земли. Для этого нужно взять два стержня из токопроводящих материалов — один из цинка, а другой из меди, а затем установить их в землю. Желательно использовать тот грунт, который находится в изолированном пространстве.

Найти промышленные устройства для получения электрики из земли проблематично, ведь их практически никто не продает. Но создать такое изобретение своими руками, следуя готовым схемам и чертежам, вполне реально.

Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии

Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты

Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.

Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.

В 1729 году мир узнал, что на земле существуют материалы (в основном это металлы), которые могут пропускать через себя ток. Эти материалы стали именоваться проводниками. Были найдены и другие вещества (например янтарь, стекло, воск), которые не проводят ток которые стали именоваться изоляторами. Но применять электричество человечество смогло лишь в начале 17 века. Стало ясно, что ток может быть использован для получения тепла и света. Тогда же было установлено, что электричество — это поток небольших заряженных частиц — электронов. И каждый из них несет малый заряд энергии. Но когда собирается много электронов, заряд становится большим, вот тогда и появляется электрическое напряжение. Поэтому электричество может по проводам перемещаться на длинные расстояния.

Давайте рассмотрим одно занятное явление. Человек снимает свитер через голову и вдруг ни с того, ни сего раздается треск. Если раздеваться в темноте, то можете наблюдать, как этот треск сопровождается искрами. Это искрит и трещит одежда. Посмотрев внимательнее можно увидеть, что свитер прилегает к рубашке, которая еще была одета на теле. Таким образом, между вещами возникает ток. Его проявление на разных предметах приводит не только к притяжению, но и к отталкиванию. Это и есть действие электричества. Выходит, что человек в нынешнее время не может и шагу ступить без электричества.

Где уже используют атмосферное электричество

Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.

Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.

В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.

На фото готовый к работе генератор Капанадзе

Реальность или миф

Когда говорим о получении энергии из воздуха, очень многие люди думает, что это искренний абсурд. Однако добыть энергетические ресурсы буквально из ничего вполне возможно. Кроме того, в наше время на стилистических форумах появляются познавательные публикации, чертежи и схемы установок, разрешающих осуществить такой план.

Рабочий принцип системы можно пояснить тем, что в воздухе содержится какой-то ничтожный процент статистического электричества, только его необходимо научится собирать. Первые опыты для создания данной установки проводились еще в далеком минувшем. В качестве светлого примера можно взять знаменитого ученого Николу Теслу, который много раз думал о доступной электрической энергии из ничего.

Одаренный изобретатель уделил данной теме значительно много времени, однако из-за отсутствия возможности сберечь все опыты и исследования на видео большинство ценных открытий осталось тайной. Все таки ведущие профессионалы пытаются воспроизвести его разработки, следуя найденным старым записям и свидетельствам современников. В результате бесчетных опытов ученые мужи соорудили машину, которая открывает возможность добыть электричество из атмосферы, другими словами фактически из ничего.

Тесла доказал, что между основанием и поднятой металлической пластиной есть конкретный электрический потенциал, являющий собой электричество возникающее в результате трения. Также ему получилось определить, что этот ресурс можно собирать.

Потом ученый сконструировал сложный прибор, способный собирать маленький объем электроэнергии, применяя лишь тот потенциал, присутствующим в воздухе. К слову, экспериментатор определил, что небольшое кол-во электрической энергии, которая содержится в воздухе, возникает при взаимном действии атмосферы с лучами солнца.

Разглядывая современные изобретения, необходимо смотреть на устройство Стивена Марка. Этот одаренный изобретатель эмитировал тороидальный генератор, который держит на порядок выше электрической энергии и превосходит очень простые разработки времен котрые уже в прошлом.

Полученного электричества абсолютно достаточно для работы слабых светильников, а еще некоторых домашних устройств. Работа генератора без добавочной подпитки выполняется на протяжении большого временного промежутка.

Особенности подключения к сетям ЛЭП

Без электричества сейчас трудно представить комфортабельное жилье. Благодаря ему жилище освещается, обогревается, выполняется готовка пищи, и нагрев воды. Вот только далеко не всегда есть возможность обеспечить электричеством жилье, особенно если дом находится далеко от города.

Многим владельцам загородных домов и дачных участков, особенно если они находятся далеко от цивилизации, приходится решать вопрос с энергообеспечением дома.

Самым распространенным решением является подключение дома к сетям ЛЭП, однако они далеко не везде имеются или же ближайшая линия находится на приличном удалении от дома.

В таком случае обеспечение электричеством дома может оказаться очень дорогим удовольствием. Ведь придется согласовывать вопросы по поставкам этого источника энергии с соответствующими органами, оплачивать установку подстанции и опор ЛЭП для подведения к дому.

И особенно неприятно то, что приобретаемое оборудование, причем за немалые деньги (подстанция, провода, опоры) перейдут на баланс местных энергосетей, то есть владельцем всего будут являться они, а владельцу дома еще придется и платить за поставки электроэнергии.

Поэтому такой вариант для многих может стать нецелесообразным, достаточно хлопотным и дорогостоящим.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

  • радиантное электричество;
  • использование мощных неодимовых магнитов;
  • получение тепла от механических нагревателей;
  • трансформация энергии земли и излучений космоса;
  • вихревые двигатели;
  • термические земляные насосы;
  • солнечные конвекторы;
  • торсионные генераторы.

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные

Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем

Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся

Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию». С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии — отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Добыча электроэнергии в соответствии с методом Белоусова

Автор книг о получении бесплатной энергии Валерий Белоусов много лет потратил на изучение такого природного явления, как молния, и того, какое влияние она оказывает на людей.

В результате этих многолетних трудов были разработаны методы получения электричества из почвы.

В соответствии с его методом вырабатывается электричество, которой хватит для запитки маломощной лампочки. Метод Валерия Белоусова очень легко реализовать самостоятельно, и он идеально подходит для дачного использования.

Подытоживая всё вышесказанное, можно сделать вывод, что вполне возможно из земли получить энергию, но она настолько незначительная, что альтернативным источником её назвать сложно. В этих целях лучше всё же использовать ресурсы природы.

Где уже используют атмосферное электричество

Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.

Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.

В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.

На фото готовый к работе генератор Капанадзе

Как получить электричество из воздуха в домашних условиях

Опыты Николы Тесла показали, что получать электричество из воздуха своими руками можно без особого труда. В наше время, когда атмосфера пронизана различными энергетическими полями, эта задача упростилась. Все, что производит излучения (теле- и радиовышки, ЛЭП и т. п.) создает энергетические поля.

Принцип получения электричества из воздуха очень прост: над землей поднимается пластина из металла, которая играет роль антенны. Между землей и пластиной возникает статическое электричество, которое, со временем накапливается. Через определенные временные интервалы происходят электрические разряды. Таким образом генерируется, а затем используется атмосферное электричество.


Схема получения атмосферного электричества своими руками

Такая схема достаточно проста ‑ для генерации потребуется только металлическая антенна и земля. Потенциал, который устанавливается между проводниками, со временем накапливается, хотя рассчитать его силу невозможно. При достижении определенного максимального значения потенциала происходит разряд тока, подобный молнии.

Энергия из воздуха своими руками

Создаем ветрогенератор своими руками в домашних условиях

Несложный маломощный ветряк можно создать и в домашних условиях. Исходя из выбранного типа ветрогенератора, можно приступать к его сборке. Пример сборки ветрогенератора будет рассматриваться на гибридной модели, совмещающей в себе генератор Дарье и Савониуса. Сборка ротора Основу ротора составят. 6 неодимовых магнитов типа D30xH10 мм, далее следует 6 кольцевых магнитов из феррита D72xd32xh15 мм и два металлических диска D230xH5 мм, закрепляться детали будут при помощи эпоксидной смолы и клея.

Ротор ветряка своими руками

Ротор ветряка своими руками На каждом из металлических дисков размещаются неодимовые магниты в количестве 6 шт., при этом нужно чередовать их полярность и размещать под углом в 60 градусов, диаметр окружности установленных магнитов должен составлять 165 мм.

Размеры ротора

Размеры ротора На втором диске подобным образом размещаются кольцевые магниты. Для того чтобы в процессе работы магниты прочно «сидели» на своих местах их заливают эпоксидной смолой.

Собираем статор

Основой для статора будут служить 9 катушек с намотанными 60 витками на каждой, толщина используемого провода должна составлять 1 мм. Далее, последовательно соединяют 1,4,7-ю катушки для первой фазы, 2,5,8 для второй фазы и, соответственно 3,6,9 для третьей.

Статор ветряка В заранее приготовленную форму из фанеры укладываются — слой пергаментной бумаги, стекловолокно и готовые катушки. После этого содержимое заливается эпоксидкой. После застывания из формы достают готовый статор.


Схема статора

Собираем генератор

Все составные части генератора готовы, и можно приступать к их сборке. Генератор будет закреплен при помощи кронштейна со шпильками. Сборка генератора состоит из нескольких этапов:

  1. В нижнем и верхнем роторах размечаются и просверливаются 4 отверстия, далее нарезается резьба для шпилек. Это нужно для того чтобы плавно посадить роторы на установленное место.
  2. В статоре аналогично ротору сверлятся такие же отверстия для шпилек.
  3. На кронштейн крепится нижний ротор магнитами кверху, потом укладывается статор и верхний ротор, обращенный магнитами вниз.
  4. Вся конструкция фиксируется шпильками и гайками к фланцу с подшипниками.

Статор ветряка

Изготовление лопастей для ветряка

Генератор ветряка Лопасти ветряка изготавливают из различных материалов: дерево, стеклоткань, алюминий. Довольно интересным решением является изготовление лопастей из ПВХ труб. Такая конструкция хороша тем, что она имеет очень маленький вес и позволяет вращаться генератору даже при очень низкой скорости ветра.

  • Берутся метровые заготовки из ПВХ трубы и разрезаются вдоль на две равные части.
  • Вырезаются полукруги будущих лопастей из жести и крепятся болтами по краям труб. Для изготовления можно использовать оцинкованную сталь, имеющую толщину 0,75 мм.

Изготовление лопастей для ветряка

Для изготовления ортогональных лопастей, необходимо вырезать два куска жести размерами 1000х40 мм и 4 части в форме капли. Отрезки сгибаются на краях и к ним крепятся капли. Лопасти крепятся к готовому каркасу размером 200х200 мм. Далее, ветряк устанавливается на мачту и производится монтаж проводов и оборудования. Такие ветряки не очень сложны в сборке и позволят стать владельцам дач и частных домов автономными от энергосетей.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий