Важно знать: как продумать расчет теплового насоса

Основные характеристики

При выборе модели ТН следует учитывать:

  • выходную тепловую мощность;
  • коэффициент трансформации тепловых насосов;
  • условный кпд;
  • годовую эффективность и издержки.

Выходная мощность

При создании нового проекта дома учитывают его потребности в тепле с учетом конструктивных особенностей материалов, создающих теплопотери через стены, окна, двери, потолок и пол помещений различных габаритов. Расчет учитывает создание комфорта при самых низких морозах в конкретной местности.

Потребляемая тепловая мощность здания выражается в кВт. Она должна покрываться вырабатываемой энергией теплового насоса. Однако часто при расчетах делают упрощение, позволяющее экономить: длительность самых холодных дней в течение года не превышает нескольких недель. На этот период подключается дополнительный источник тепла, например, ТЭНы, подогревающие воду в котле.Они работают только в критических ситуациях при морозах, а в остальное время отключены. Это позволяет использовать ТН с меньшими мощностями.

Возможности конструкций

Для справки. Модели выходной мощности 6÷11 кВт «рассольно-водяных» схем способны нагревать воду встроенных баков в относительно небольших постройках. Мощность в 17 кВт достаточна для поддержания температуры воды 65ºС у котла с емкостью 230÷440 литров. Потребности в тепле средних по величине зданий покрывают мощности 22÷60 кВт.

Коэффициент трансформации тепловых насосов Ктр

Он определяет эффективность конструкции по безразмерной формуле:

Kтр=(Твых-Твх)/Твых

Величина «Т» обозначает температуру теплоносителей на выходе и входе в конструкцию.

Коэффициент преобразования энергии (ͼ)

Его рассчитывают для определения доли полезной мощности тепла по отношению к приложенной энергии на компрессор.

ͼ=0,5Т/(Т-То)=0,5(ΔТ+То)/ΔТ

Для этой формулы температура потребителя «Т» и источника «То» определяется в градусах Кельвина.

Величину ͼ можно определить по количеству затраченной энергии на работу компрессора «Рэл» и полученной полезной теплопроизводительности «Рн». В этом случае его называют «СОР» по сокращению от английского термина «Coefficient of perfomance».

ͼ=Рн/Рэл

Коэффициент ͼ — переменная величина, зависимая от перепада температур между источником и потребителем. Он обозначается цифрами от 1 до 7.

Условный КПД

Некоторые продавцы в рекламных целях «называют» показатель СОР термином КПД и заявляют, что он больше единицы и составляет 400 или 500%.

Это неверное утверждение: коэффициент полезного действия учитывает потери мощности при работе конечного устройства.Для его определения надо выходную тепловую мощность разделить на приложенную с учетом энергии геотермальных источников. При таком расчете вечного двигателя не получится.

Годовая эффективность и издержки

Коэффициент СОР оценивает работу теплового насоса в определенный момент времени при конкретных условиях эксплуатации. Чтобы проанализировать работу ТН, введен показатель эффективности системы за год (β).

β=Qwp/WeІ

Здесь символ Qwp обозначает величину тепловой энергии, произведенной за год, а Wel — значение потребленного электричества установкой за то же время.

Показатель издержек Eq

Эта характеристика обратна показателю эффективности.

Eq=1/β

Для определения характеристик ТН используется специализированное программное обеспечение и заводские стенды.

Принцип действия тепловых насосов

Стоит отметить, что практически любая среда обладает тепловой энергией. Почему бы не использовать возможное тепло для отопления своего дома? Поможет в этом тепловой насос.

Принцип работы теплового насоса таков: тепло передается теплоносителю от источника энергии с низким потенциалом. На практике же все происходит следующим образом.

Теплоноситель проходит через трубы, которые зарыты, к примеру, в земле. Потом теплоноситель попадает в теплообменник, где собранная тепловая энергия передается на второй контур. Хладагент, который расположен во внешнем контуре, нагревается, и превращается в газ. После этого газообразный хладагент проходит в компрессор, где сжимается. Это приводит к тому, что хладагент еще больше нагревается. Горячий газ идет в конденсатор, а там тепло переходит к теплоносителю, который уже обогревает сам дом.

Геотермальное отопление дома: принцип работы

Холодильные системы устроены по такому же принципу. Это значит, что холодильные установки могут использоваться для охлаждения воздуха в помещении.

Виды тепловых насосов

Существует несколько видов тепловых насосов. Но чаще всего устройства классифицируются характером теплоносителя на внешнем контуре.

Устройства могут черпать энергию с

  • воды,
  • грунта,
  • воздуха.

Полученная энергия в доме может применяться для отопления помещения, для нагревания воды. Потому и различают несколько видов тепловых насосов.

Тепловые насосы: грунт — вода

Самый лучший вариант альтернативного отопления – получение тепловой энергии из грунта. Так, уже на глубине шести метров земля имеет постоянную и неизменную температуру. В качестве теплоносителя в трубах используется специальная жидкость. Наружный контур системы выполняется из пластиковых труб. Трубы в грунте могут размещаться вертикально или горизонтально. Если трубы размещаются горизонтально, то необходимо выделять большую площадь. Там, где трубы устанавливаются горизонтально, невозможно использовать земли для сельскохозяйственных нужд. Можно только устраивать газоны или сажать однолетние растения.

Чтобы устроить вертикально трубы в грунте, необходимо сделать несколько скважин глубиной до 150 метров. Это будет эффективный геотермальный насос, так как температура на большой глубине у земли высокая. Для передачи тепла применяются глубинные зонды.

Тип насоса «вода — вода»

Кроме того, тепло можно получать из воды, которая находится глубоко под землей. Могут использоваться водоемы, грунтовые воды или сточные воды.

Стоит отметить, что принципиальных отличий между двумя системами нет. Самые малые затраты требуются тогда, когда создается система получения тепла из водоема. Трубы нужно наполнить теплоносителем и погрузить в воду. Более сложная конструкция нужна для того, чтобы создать систему получения тепла из грунтовых вод.

Насосы «воздух — вода»

Можно собирать тепло и с воздуха, но в регионах, где очень холодные зимы, такая система не эффективна. В то же время монтаж системы очень простой. Вам понадобится только выбрать и установить нужное устройство.

Еще немного о принципе действия геотермических насосов

Для отопления очень выгодно использовать тепловые насосы. Дома, площадь которых имеет более 400 квадратных метров, очень быстро окупают затраты на систему. Но если ваш дом не очень большой, то можно сделать систему отопления своими руками.

Сначала нужно купить компрессор. Подойдет устройство, который оснащен обычный кондиционер. Его крепим на стене. Конденсатор можно изготовить самому. Нужно сделать из медных труб змеевик. Его помещают в пластиковый корпус. Испаритель также устанавливается на стене. Пайку, заправку фреоном и тому подобные работы должен выполнять только профессионал. Неумелые действия не приведут к хорошему результату. Мало того, можно получить травму.

Перед тем, как запустить в работу тепловой насос, необходимо проверить состояние электрификации дома. Мощность счетчика должна быть рассчитана на 40 ампер.

Самодельный тепловой геотермальный насос

Отметим, что не всегда созданный своими руками тепловой насос оправдывает ожидания. Причина тому – отсутствие правильных тепловых расчетов. Система имеет малую мощность, а также растут затраты на обслуживание

Поэтому важно провести точно все расчеты. опубликовано econet.ru 

Делаем тепловой насос своими руками

Да, тепловые насосы действительно стоят дорого, даже если устанавливать их своими руками, поэтому не каждый может позволить себе такую покупку. Но можно изготовить его своими руками, используя детали б/у или те, которые есть в хозяйстве.

Тепловой насос можно сделать из деталей, имеющихся в хозяйстве

Если планируется установка в старом здании, то для начала нужно проверить состояние счетчика и электропроводки. Порядок работ следующий.

Шаг 1. Первое, что вам нужно сделать – купить компрессор. Более дешевый вариант – найти компрессор от старого кондиционера. Он идеально подходит для изготовления насоса. Крепить деталь к поверхности стены следует, используя крепежи-кронштейны (модель L 300).

Нужен компрессор

Шаг 2. Затем необходимо изготовить конденсатор, для чего потребуется стальная емкость V=100 л. Ее необходимо разрезать пополам, а внутрь поместить медный змеевик подходящего диаметра с толщиной стенок более одного миллиметра.

Конденсатор изготавливаем из нержавеющего стального бака

Изготовление змеевика

  • Возьмите обычный использованный толстостенный баллон (например, газовый) и аккуратно намотайте на него трубку, чтобы дистанция между соседними витками была подходящей.
  • Затем каждый из витков трубки нужно зафиксировать. Для этого понадобится перфорированный профиль (уголок из алюминия), крепящийся к змеевику таким образом, чтобы напротив каждого отверстия располагался виток. Благодаря этому вы укрепите конструкцию и откорректируете шаг витков.

    Змеевик

    Еще один пример готового змеевика

Шаг 3. Когда закрепите змеевик, половинки емкости нужно сварить обратно.

Шаг 4. Далее изготовьте испаритель. Для него понадобится еще одна емкость из пластика, литров на 70. В нее также монтируется змеевик, вот только диаметр трубы должен быть поменьше. Испаритель крепите к стене, используя все те же кронштейны типа «L» нужного размера.

Изготовление испарителя

Шаг 5. Следующий этап заключается в привлечении специалиста. Дело в том, что самостоятельно сварить трубы и закачать фреон непросто, особенно при отсутствии необходимых знаний. Эксперт по ремонту холодильников отлично с этим справится.

Шаг 6. Итак, «стержень» системы уже готов, осталось подсоединить его к распределителю и заборнику тепла. И если с распределителем проблем нет, то на заборник придется потратить немало сил и времени. Конечно, лучше опять же обратиться к специалисту, но давайте попытаемся разобраться, как сделать все своими руками.

Водяной тепловой насос в сборе

Особенности установки различны для каждого из типов тепловых агрегатов.

Вертикальные насосы, относящиеся к категории «грунт-вода»

В этом случае растраты неизбежны, так как нужно пробурить скважину, а сделать это без бурильной установки невозможно. Глубина скважины должна составлять минимум 50 и максимум 150 метров. В готовую скважину опускаете геотермальный зонд, который впоследствии подключается к насосу.

Вертикальные насосы, относящиеся к категории «грунт-вода»

Насосы типа «грунт-вода» горизонтальные

Для горизонтальных систем потребуется коллектор, изготовленный из труб. Такой коллектор должен размещаться ниже уровня замерзания грунта, который зависит от климатических особенностей местности, но зачастую не превышает 1.5 метра.

Насосы типа «грунт-вода» горизонтальные

Для установки коллектора снимите верхний слой почвы. Можно использовать для этого спецтехнику или сделать все лопатой, что значительно дешевле. После укладки труб засыпьте землю обратно.

Есть другая технология укладки труб – вырыть для каждой отдельную канаву. Таких канав должно быть несколько и все они должны размещаться ниже уровня промерзания почвы. Помещаем в них трубы, засыпаем.

Технология «вода-вода»

Соединение коллектора производите на суше, применяя ПНД-трубы. После этого заливаете в систему теплоноситель и перемещаете к воде. Коллектор желательно погружать в центральную часть водоема или же просто на нужную глубину.

Технология «вода-вода»

Насосы класса «вода-воздух»

Как упоминалось выше, для такого рода насосов никакие масштабные работы не требуются, ведь тепло извлекается из воздуха. Нужно только подобрать место – крыша здания, к примеру – и установить коллектор. Далее последний подключается к отопительной системе.

Насосы класса «вода-воздух»

На этом изготовление и монтаж теплового насоса закончен. Надеемся, что статья была действительно полезной для вас!

Что такое тепловой насос для отопления частного дома? Как работает?

Специальное устройство, которое способно извлекать тепло из окружающей среды называется тепловой насос.

Применяются такие приборы в качестве основного или дополнительного метода обогрева помещений. Некоторые устройства также работают на пассивное охлаждение здания — при этом насос применяется как для летнего охлаждения, так и для зимнего обогрева.

В качестве топлива используется энергия окружающей среды. Такой обогреватель извлекает тепло из воздуха, воды, грунтовых вод и так далее, поэтому это устройство относят к классу возобновляемых источников энергии.

Важно! Для работы таких насосов требуется подключение к электросети. В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства

Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)

В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)

В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло).

Большинство приспособлений работают как при положительных, так и при отрицательных температурах, однако КПД устройства напрямую зависит от внешних условий (т. е. чем выше температура окружающей среды, тем мощнее будет устройство). В общем случае прибор работает следующий образом:

  1. Тепловой насос вступает в контакт с окружающими условиями. Обычно аппарат извлекает тепло из земли, воздуха или воды (в зависимости от типа устройства).
  2. Внутри прибора установлен специальный испаритель, который заполнен хладагентом.
  3. При контакте с внешней средой хладагент закипает и испаряется.
  4. После этого хладагент в виде пара поступает в компрессор.
  5. Там он сжимается — благодаря этому серьёзно повышается его температура.
  6. После этого разогретый газ поступает в систему отопления, что приводит к нагреванию основного теплоносителя, который и используется для отопления помещений.
  7. Хладагент понемногу охлаждается. В конце он превращается обратно в жидкость.
  8. Потом жидкий хладагент поступает в специальный клапан, который серьёзно понижает его температуру.
  9. В конце хладагент вновь попадает в испаритель, после чего цикл нагрева повторяется.

Фото 1. Принцип работы теплового насоса типа грунт-вода. Синим цветом показан холодный теплоноситель, красным – горячий.

Преимущества:

  • Экологичность. Такие устройства относятся к возобновляемым источникам энергии, которые не загрязняют атмосферу своими выбросами (тогда как в случае использования природного газа образуются вредные парниковые испарения, а для производства электроэнергии часто применяется сжигание угля, из-за чего также загрязняется воздух).
  • Хорошая альтернатива газу. Тепловой насос идеально подойдёт для отопления помещений в случаях, когда использование газа затруднительно по тем или иным причинам (например, когда дом находится вдали ото всех основных инженерных сетей). Насос также выгодно отличается от газового отопления тем, что для установки такого прибора не требуется получать государственное разрешение (но при бурении глубокой скважины его все же придётся получить).
  • Недорогой дополнительный источник тепла. Насос идеально подойдёт в качестве дешёвого вспомогательного источника питания (оптимальный вариант — применение газа зимой и насоса — весной и осенью).

Недостатки:

  1. Тепловые ограничения в случае использования водяных насосов. Все тепловые аппараты хорошо функционируют при положительных температурах, тогда как в случае работы при отрицательных температурах многие насосы перестают работать. В основном это связано с тем, что при этом вода замерзает, что делает невозможным её применение как источника тепла.
  2. Могут появиться проблемы с устройствами, которые в качестве тепла используют воду. Если для нагрева применяется вода, то потребуется найти её стабильный источник. Чаще всего для этого следует пробурить скважину, благодаря чему расходы на монтаж устройства могут возрасти.

Внимание! Насосы обычно стоят в 5—10 раз дороже газового котла, следовательно использование таких приборов в целях экономии в ряде случаев может быть нецелесообразно (чтобы насос окупился, потребуется подождать несколько лет)

Тепловой насос «воздух-вода» для дома

Особенностью систем «воздух-вода» является сильная зависимость температур теплоносителя в системе отопления от температуры источника — наружного воздуха. Эффективность подобного оборудования постоянно изменяется как в сезонном отношении, так и в погодных условиях. В этом проявляется существенное отличие аэротермальных систем от геотермальных комплексов, чья работа стабильна в течение всего срока службы и не зависит от внешних условий.

Кроме того, тепловые насосы типа «воздух-вода» способны как обогревать, так и охлаждать воздух в помещениях, что делает их востребованными в регионах с относительно холодными зимами и жарким летом. В целом, использование подобных систем наиболее эффективно в относительно теплых районах, а для северных областей требуется дополнительные средства обогрева (обычно используются электронагреватели).

Как работают тепловые насосы воздух-вода?

В основе работы теплового насоса типа «воздух-вода» положен принцип Карно. Говоря более понятным языком, используется конструкция фреонового холодильника. Хладагент (фреон) циркулирует в замкнутой системе, проходя последовательно стадии:

  • испарения, сопровождающегося сильным охлаждением
  • подогрева от тепла поступающего наружного воздуха
  • сильного сжатия, при котором его температура становится высокой
  • конденсации с переходом в жидкое состояние
  • прохода через дроссель с резким падением давления и испарением

Для нормальной циркуляции хладагента необходимо иметь два отделения — испаритель и конденсатор. В первом температура низкая (отрицательная), для нагрева используется тепловая энергия из воздуха окружающей среды. Второе отделение служит для конденсирования хладагента и передачи тепловой энергии в теплоноситель системы отопления.

Роль поступающего извне воздуха — передача тепла в испаритель, где температура очень низкая и требует повышения для предстоящего сжатия. Тепловая энергия воздуха имеется даже при отрицательных температурах и сохраняется до тех пор, пока не произойдет понижение температуры до абсолютного нуля. Низкопотенциальные источники тепловой энергии позволяют получать высокую эффективность системы, но при сильном понижении наружной температуры до -20°C или – 25°C система останавливается и требует подключения дополнительного источника обогрева.

Достоинства и недостатки

Достоинствами тепловых насосов «воздух-вода» являются:

  • простота установки, отсутствие земляных работ
  • источник тепловой энергии — воздух — имеется везде, он доступен и совершенно бесплатен. Для работы системы требуется только электропитание для циркуляционного оборудования, компрессора и вентилятора
  • тепловой насос можно конструктивно объединить с вентиляцией, что позволить существенно повысить эффективность работы обеих систем
  • отопительная система безвредна для окружающей среды и не опасна в эксплуатационном отношении
  • работа системы практически бесшумна, может управляться при помощи систем автоматики

Недостатками теплового насоса «воздух-вода» являются:

  • ограниченность применения. Бытовые модели ТН требуют подключения дополнительных систем отопления уже при -7°C, промышленные образцы способны держать температуру до -25°C, что для большинства регионов России слишком мало
  • зависимость эффективности системы от температуры наружного воздуха делает работу системы нестабильной и требует постоянной перенастройки режимов функционирования
  • для питания вентиляторов, компрессоров и прочих устройств требуется подключение к стабильному источнику электроэнергии

Планируя использование подобной системы отопления и ГВС, необходимо учитывать эти особенности.

Расчет мощности установки

Порядок расчета мощности установки сводится к определению площади дома, подлежащей обогреву, подсчету необходимого количества тепловой энергии и подбору оборудования, соответствующего полученным значениям. Излагать подробную методику расчета нет смысла, поскольку она чрезвычайно сложна, требует знания многих параметров, коэффициентов и прочих значений. Кроме того, нужен опыт выполнения подобных расчетов, иначе результат окажется совершенно ошибочным.

Для решения проблемы рекомендуется использовать онлайн-калькулятор, найденный в сети. Пользоваться им легко, надо лишь подставить в окошечки свои данные и получить ответ. Если появились сомнения, расчет можно продублировать на другом ресурсе, чтобы получить сбалансированные данные.

Рабочая жидкость в установке грунтового теплового насоса.

Ранее, в системах проводящих тепло из грунта, был использован раствор соли NaCl, отсюда и возник сегодня термин – соляные насосы. «Солянки» давно уже не применяются. Самым популярным является водный раствор пропиленгликоля, считающийся экологичным. Как правило, именно он рекомендуется для заполнения – он может покупаться, как готовая рабочая жидкость для такого использования. При его выборе необходимо руководствоваться рекомендациями производителя теплового насоса, так как жидкость может содержать различные добавки ингибиторов, стабилизаторов, антиоксидантов.

Пропиленгликоль имеет не только достаточно низкую температуру застывания, но и не вызывает коррозии металлов, не растворяет пластик и не вызывает размывания насосов. Тем не менее, его плотность и вязкость, положительно влияющие на количество энергии, необходимой для прокачки, больше, чем воды, поэтому его используют в не очень большой концентрации (34%). Есть, конечно, много жидкостей, которые не замерзают при температуре -15 градусов Цельсия. Часто используется также раствор этиленгликоля, но он считается вредным для окружающей среды, потому что ядовитый и не подвергается биологическому разложению.

Хорошие свойства имеет также этанол. Его самое большое преимущество — это низкая вязкость и плотность, благодаря чему его прокачка поглощает меньше энергии. Применение его не является популярным из-за его воспламеняемости, интенсивного запаха, и, в первую очередь, отсутствия смазочных свойств, что грозит повреждением циркуляционного насоса. Поэтому некоторые производители запрещают его использование.

Конкретные расчёты

Допустим, нужно сделать расчёт для домовладения площадью 150 кв. м. Если принять, что на 1 квадратный метр теряется 100 Ватт тепла, получаем: 150х100=15 кВатт тепловых потерь.

Как соотносится это значение с циркуляционным насосом? При тепловых потерях происходит постоянный расход тепловой энергии. Для поддержания температурного режима в помещении необходимо большее количество энергии, чем для его компенсации.

Для расчёта циркуляционного насоса для системы отопления, следует понимать, какие у него функции. Это устройство выполняет следующие задачи:

  • создать напор воды, достаточный для того, чтобы преодолеть гидравлическое сопротивление узлов системы;
  • перекачать по трубам и радиаторам такой объем горячей воды, который требуется для эффективного прогрева домовладения.

То есть, для того, чтобы система заработала, нужно подогнать тепловую энергию к радиатору. И эту функцию выполняет циркуляционный насос. Именно он стимулирует подачу теплоносителя к приборам отопления.

Следующая задача: какое количество воды, согретой до нужной температуры, надо доставить к радиаторам за определённый период времени, при этом компенсируя все теплопотери? Ответ выражается в количестве перекачанного теплоносителя в единицу времени. Это и будет называться мощностью, которой обладает циркуляционный насос. И наоборот: можно определить примерный расход теплоносителя по мощности насоса.

Данные, которые для этого нужны:

  • Количество тепловой энергии, необходимой для того, чтобы компенсировать теплопотери. Для данного домовладения площадью 150 кв. метров эта цифра 15 кВт.
  • Удельная теплоёмкость воды, которая выступает в роли теплоносителя — 4200 Дж на 1 килограмм воды, на каждый градус температуры.
  • Дельта температур между водой на подаче из котла и на последнем отрезке трубопровода в обратке.

Считается, что в нормальных условиях это последнее значение не бывает больше 20 градусов. В среднем берут 15 градусов.

Формула для того, чтобы рассчитать насос, следующая: G/(cх(Т1-Т2))= Q

  • Q — это расходование теплоносителя в отопительной системе. Столько жидкости при определённой температуре нужно доставить циркуляционному насосу к отопительным приборам в единицу времени, чтобы теплопотери были компенсированы. Нецелесообразно приобретать устройство, у которого мощность больше. Это приведёт только к повышенному расходу электричества.
  • G — теплопотери дома;
  • Т2 — температура теплоносителя, вытекающая из теплообменника котла. Это именно тот уровень температуры, который нужен для обогрева помещения (примерно 80 градусов);
  • Т1 — температура теплоносителя на обратном трубопроводе при входе в котёл (чаще всего 60 градусов);
  • с — это удельная теплоёмкость воды (4200 Джоулей на кг).

При вычислении с помощью указанной формулы получается цифра 2,4 кг/с.

Теперь нужно перевести этот показатель на язык производителей циркуляционных насосов.

1 килограмм воды соответствует 1 кубическому дециметру. Один кубический метр равен 1000 кубических дециметров.

Получается, что в секунду насос перекачивает воду следующим объёмом:

2,4/1000=0,0024 куб. м.

Далее нужно перевести секунды в часы:

0,0024х3600=8,64 куб. м/ч.

Возобновляемый источник энергии

Когда счета за электроэнергию начинают расти, большинство из нас задается вопросом, есть ли альтернатива. Использование возобновляемых источников энергии в качестве отопления становится необходимым шагом для домовладельцев, в первую очередь потому, что газ и электричество, получаемые из ископаемых видов топлива, становятся все дороже. Переход на “зеленые” технологии, такие как (ВТН) тепловой насос воздух-вода, часто не вызывает сомнений у тех, кто желает сократить счета и оставить меньший углеродный след, но так ли они хороши?

Как и в любом другом деле, перед покупкой важно взвешенно подойти к вопросу, поэтому давайте рассмотрим достоинства и недостатки ВТН.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий