Теплообмен между несколькими теплоносителями – делаем правильно

Виды теплообмена

Теперь поговорим о видах теплообмена — их всего три. Радиационный — передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена — конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты — это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction — «проводимость»). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА — пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, — это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Теплообменник на дымоход

Смонтированный на дымоход теплообменник использует вылетающую в трубу тепловую энергию

На дачах и в банях у «народных умельцев» можно увидеть самодельный водяной или воздушный теплообменник, установленный на дымоход небольшой печи. Получается очень выгодно: тепло не уходит вместе с дымом, а часть его служит для нагрева воды.

Установив теплообменник на дымоход для отопления, можно получать довольно большое количество горячей воды. Конечно, этого не хватит, чтобы обогреть весь дом, но достаточно, чтобы поставить в предбаннике один-два радиатора. Использовать теплообменник на дымоход можно как для отопления, так и для быстрого нагрева воды в бане.

Подобное устройство может быть очень простым в изготовлении. За основу можно взять отрезок большой трубы диаметром 500–700 мм, или сварить бак из нержавейки. В центре конструкции будет проходить вертикальная труба, соответствующая диаметру дымохода, а сверху и снизу должны быть приварены два патрубка.

Изготовление теплообменника для отопления своими руками может стать способом устроить в доме полноценное водяное отопление без приобретения дорогостоящего оборудования.

Специальные формулы

Расчет основывается на уравнении теплопередачи Q = F×k×Δt, где Q означает объем теплового потока (Вт), F — площадь поверхности в м2, k — коэффициент передаваемого тепла, а Δt — разность в показателях температур теплоносителей на входе и выходе из агрегата.

Чтобы вычислить площадь поверхности, используют формулу F=Q/k×Δt. Формула теплопередачи учитывает конструктивные особенности агрегата. Рассмотрев их, можно выделить значения t1 и t2, чтобы рассчитать F. Для вычислений используется формула Q=G1cp1(t1вх–t1вых)=G2cp2(t2вых–t2вх), где G1и G2 обозначают расход массы греющего и нагреваемого теплоносителя, cp1 и cp2 — удельную теплоемкость по нормативам. Обмениваясь энергией, теплоносители меняют температуру, поэтому t1вх и t1вых, t2вх и t2вых выводятся в проверочном расчете для сравнения с фактическими температурными показателями

Важно учесть коэффициент теплоотдачи среды и конструктивные особенности теплообменного оборудования. Детальный конструкторский расчет предполагает составление схемы теплообменных агрегатов, включая схему движения теплоносителя

Стандартные размеры элементов и коэффициенты теплоотдачи учитывают в ГОСТах. Чтобы не ошибиться, можно ознакомиться с примерами расчетов для разных типов теплового оборудования. Простые подсчеты выполняются на онлайн-калькуляторе, куда вносятся соответствующие параметры. Для сложных систем понадобятся опыт и знания, а также потребуется соответствующее программное обеспечение. Избежать ошибок можно, если доверить проведение расчетов специалистам.

Пластинчатые теплообменники

В независимых системах отопления в основном применяют оборудование пластинчатого типа. Чаще выбирают паяный вариант или разборный, чтобы можно было нарастить мощность.

Конструкции

Основа конструкции — пластины, перфорированные штамповкой для увеличения площади теплообмена и формирования каналов, по которым движется рабочая среда. Пластины плотно прижаты друг к другу, их зажимают между двух металлических плит, которые соединяют с помощью направляющих и винтовых шпилек. На одной стороне каждой пластины есть пазы, куда вставляют резиновые прокладки для герметичности.

Одна из плит стационарна, вторая подвижна — ее можно снимать, чтобы увеличить или уменьшить количество пластин. При сборке сначала закрепляют направляющие на штативе и неподвижной плите. На них нанизывают пластины, и подвижная плита стягивается с неподвижной болтами.

На торцевой неподвижной плите и каждой пластине есть по четыре отверстия для подведения и отведения теплоносителя и теплоприемника. Пространство между соседними пластинами поочередно заполняется холодной и горячей средами, а уплотнители обеспечивают герметичность конструкции.

Каждое устройство оснащают фильтром. Он сдерживает крупные частицы примесей, мелкий мусор. Прибор самоочищается за счет турбулентных потоков, но на пластинах откладывается накипь, осадки примесей воды. Периодически фильтр и пластины нужно промывать чистящими растворами. Можно понять, что такое время пришло по перепадам давления в теплообменнике и снижению его работоспособности.

Пластины изготавливают из нержавеющей стали, меди, латуни (используют при высоком давлении в системе), графита, титана, сплава алюминия и кремния. Толщина пластин составляет от 0,4 до 1 мм. Выбор материала зависит от условий работы и от среды, которой будет заполнено устройство. Чаще всего это вода, но также используют масло, антифриз.

Преимущества

Пластинчатые аппараты обладают высокой производительностью, их можно подбирать по размерам и материалам изготовления в зависимости от задач. Они могут выполнять разные функции, например: нагревательного элемента, охлаждающей части системы, автоматического включателя или выключателя давления.

Каждый подвид обладает своими плюсами:

  • Разборные приборы просты в установке и использовании: их можно разобрать, почистить и собрать обратно. Площадь теплообмена такого теплообменника равна сумме площади пластин. Поэтому есть возможность регулировать производительность, изменяя количество пластин, если нужно увеличить или уменьшить площадь отопления.Также разборные конструкции имеют длительный срок службы и пригодны для ремонта — отдельные пластины заменяют на новые. Но они не подходят для работы с химически агрессивными средами и требуют регулярной смены прокладок.

  • Паяные устройства имеют более прочную конструкцию, редко требуют ремонта и выдерживают работу с щелочами и кислотами. Благодаря этому их часто применяют в химической промышленности.

  • Сварные теплообменники предназначены для использования в технических процессах с экстремально высокими температурами и давлением, с агрессивными веществами. Работают с высокотемпературным паром, газами, жидкостями и их смесями. Материал пластин — нержавеющая сталь, титан, никелевые сплавы. Эти аппараты отличает высокая эффективность и небольшие размеры, им нужно минимальное обслуживание.

Благодаря рифленой поверхности контуров этот вид теплообменников имеет максимальное прилегание и циркуляцию рабочих сред. Разделяющие среды пластины тоньше по сравнению с другими материалами. Это увеличивает скорость передачи энергии, снижает тепловые потери и обеспечивает высокий коэффициент теплообмена.

Методы составления теплового баланса

Тепловой баланс может быть составлен внешним или внутренним методом. Первый связан с использованием величин удельных энтальпий, второй – с использованием величин теплоемкостей.

Для расчета тепловой нагрузки при внутреннем методе применяются различные формулы, что зависит от того, каким образом происходит протекание теплообменных процессов.

Если при теплообменном процессе не используются никакие превращения, а соответственно тепловые выделения или поглощения, рассчитать тепловую нагрузку можно за следующей формулой

Если при теплообменном процессе конденсируется пара или испаряется жидкость, протекают определенные химические реакции, тепловой баланс вычисляется по следующей формуле

Основанием для расчета теплового баланса в случае применения внешнего метода выступает факт поступления или выхода равного количества энергии в теплообменное устройство за определенную единицу времени. Внутренний метод отличается от внешнего тем, что при первом используются данные о процессах теплообмена, а при втором – данные внешних показателей.

Тепловой баланс по внешнему методу вычисляется таким образом:

Величина Q1 определяет количество энергии, поступающей в устройство и выходящей из него за единицу времени.

Для установления количества тепловой энергии, передающегося между различными средами, необходимо вычислить разницу энтальпий с использованием формулы

Теплообменный процесс может происходить и с использованием определенных химических или фазовых превращений. При этом количество тепловой энергии вычисляется за формулой

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Как изготовить самодельный теплообменник

Регистр из нескольких труб

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Материалы для изготовления

Пример использования чугунных радиаторов в качестве теплообменника в кирпичной печи

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Расчет мощности теплообменника

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Особенности конструкции

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Особенности монтажа

Теплообменник устанавливают внутрь печи в процессе ее кладки

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

Порядок действий:

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления

Обратим внимание и на другие сферы их применения

https://youtube.com/watch?v=5_C4IMDcOc4

Расчет теплообменных аппаратов

При расчете поверхностных теплообменных аппаратов основным уравнением для расчета является уравнение

(41)

где Q – количество теплоты, переданной через стенку от греющей среды к нагреваемой за единицу времени, Вт; k – коэффициент теплопередачи, равный обратной величине термического сопротивления и определяемый по формуле (42):

(42)

где F – поверхность теплообменника, м2; t – температурный напор, град.

Ранее предполагалось, что температура греющей и нагреваемой сред не изменяется вдоль поверхности нагрева. Однако, хотя такой случай и встречается на практике (в испарителях), но чаще всего температура теплоносителей по поверхности нагрева изменяется. На рис. 39,а показана схема теплообменника, где теплоносители движутся противоточно навстречу друг другу. На рис. 39,б изображен теплообменник, в котором теплоносители движутся по схеме прямотока (параллельного тока); в этом случае величина t изменяется по поверхности нагрева сильнее, чем в предыдущем случае. Бывают и теплообменники с перекрестным током и с движением теплоносителей по сложным схемам (рис. 39,в).

Рис. 39. Схема теплообменников: а – противоток; б – прямоток; в – перекрестный ток

Рис. 40. Изменение температуры жидкости в теплообменном аппарате: а – прямоток; б – противоток

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера — эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость — жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой — тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср – удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 — 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по первой стороне и

Q2 = 18 125 * (12 —

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет. Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м2]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):

– среднелогарифмический температурный напор, считаемый по формуле (7.3):

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м2]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 — 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м2.

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ – плотность, [кг/м3], η – динамическая вязкость, [Н*с/м2], v – скорость среды в канале, [м/с], d см – смачиваемый диаметр канала .

По таблице ищем необходимое нам значение критерия Прандтля и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 – в условиях нагрева жидкости, и n = 0,3 – в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ – коэффициент теплопроводности, ϭ – толщина стенки канала, α1 и α2 – коэффициенты теплоотдачи от каждого из теплоносителей стенке.

Советы по самостоятельному ведению работ

Прежде чем взяться за монтаж двухтрубной системы отопления, необходимо подобрать трубы подходящего диаметра.

Для тупиковой сети небольшого дома, где планируется принудительная циркуляция теплоносителя, это сделать несложно: на магистрали принимается труба диаметром 20 мм, для подводок к радиаторам — 16 мм. В двухэтажном доме площадью до 150 м ² требуемый расход обеспечат трубы диаметром 25 мм, подводки остаются такими же.

При коллекторной схеме подводки выполняются трубами 16 мм, а прокладка магистралей к коллектору выполняется из трубопроводов 25-32 мм в зависимости от площади этажей. В остальных случаях за расчетом рекомендуется обращаться к специалистам по проектированию, они помогут выбрать оптимальную схему и размеры всех ветвей.

Для монтажа отопления дома своими руками следует подобрать трубы из подходящего материала из перечня:

  1. Металлопластиковые трубопроводы. При сборке на компрессионных фитингах не требуется специальных инструментов, только ключи. Более надежные прессовые соединения выполняются клещами.
  2. Сшитый полиэтилен. Данный материал тоже соединяется компрессионными и прессовыми фитингами, а трубы Rehau — методом расширения и натяга фиксирующего кольца.
  3. Полипропилен. Наиболее дешевый вариант, но требующий некоторых навыков сварки стыков и наличия сварочного аппарата.
  4. Гофрированная нержавеющая труба стыкуется зажимными фитингами.

Трубопроводы из стали и меди не рассматриваются, поскольку сделать из них отопление под силу не каждому, здесь требуется умение и опыт. Сборка системы производится начиная от котла с последующим присоединением радиаторов и запорной арматуры.

По окончании сеть проверяется на герметичность с помощью опрессовочного насоса.

Конвекция

При конвекции энергия передается потоками, возникающими в различных средах. 

В зависимости от причины возникновения, процессы этого типа теплообмена делят на естественную и вынужденную конвекцию:

  1. Естественная конвекция возникает под влиянием естественных сил: неравномерного прогрева, силы тяжести. Процессы естественной конвекции происходят на планете ежеминутно. Появление облаков, формирование атмосферных фронтов, циклонов и антициклонов в атмосфере возможно благодаря этому процессу. Воды мирового океана так же подвержены процессам конвекции, в результате образуются океанические течения. Движение тектонических плит так же обусловлено конвективными процессами.

  2. Вынужденная конвекция – зависит от присутствия внешних сил. Например, при помешивании ложкой горячий чай остывает именно за счет этого явления.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Устройство системы

Несложный по конструкции самодельный теплообменник послужит для отопления дома

Принцип действия самодельного теплообменника состоит в том, что печь передает ему энергию от сгорания дров или угля, а нагревшаяся вода расходится по трубам во все комнаты. Такой способ отопления позволяет обитателям дома наслаждаться равномерным распределением тепла. Кроме того, все помещения прогреваются гораздо быстрее, а расходы на приобретение топлива снижаются.

Усовершенствовать печное отопление частного дома можно двумя способами:

  • построить печь «с нуля» под конкретный размер теплообменника;
  • установить в существующую печь самодельный теплообменник, изготовленный по размерам топки.

Схема кирпичной печи с теплообменником

Изготовив теплообменник для отопления своими руками, домовладелец может быть уверенным, что его печь с водяным контуром станет действовать не хуже настоящего твердотопливного котла. Отличие будет только в том, что у печки расположение входного отверстия теплообменника получится немного выше над полом, чем у заводских котлов. Это довольно существенная разница, которая может влиять на скорость естественной циркуляции теплоносителя.

Подключение теплообменника к системе отопления нужно сделать таким образом, чтобы труба поступления холодной воды (обратка) была расположена как можно ниже.

Так же, как в обычной системе отопления, в верхней точке трубопроводов нужно вмонтировать расширительный бачок. Он будет компенсировать изменение объема нагретой воды и выпускать из системы пузырьки воздуха. Если отопление через теплообменник с естественной циркуляцией окажется недостаточным для обогрева большого коттеджа, придется установить в систему циркуляционный насос.

Зачем считать теплоотдачу

Расчет коэффициента теплопередачи для стальных труб и изделий из них поможет определить, сколько килокалорий или Джоулей от внутреннего теплоносителя они способны передать в атмосферу. При проектировании отопления после такого расчета легко вычислить требуемый диаметр стальной трубы. Если правильно все сделать, эффективность обогревателей будет максимальной.

Иногда точно такой же расчет теплоотдачи стальных труб нужен для обратного – подобрать изолирующий материал, который сможет препятствовать потерям. Все зависит от назначения и условий работы исследуемого трубопровода.

Установка двухконтурных котлов

Современные приборы имеют автоматику, которая контролирует степень нагрева и поддерживает температуру теплоносителя. Двухконтурные котлы можно назвать настоящей домашней котельной, так как они способны не только поддерживать комфортную температуру воздуха в доме, но и обеспечить жильцов горячей водой. Тем не менее, такие устройства сложны, поэтому не застрахованы от поломок.

Природный газ – один из лучших видов топлива, но при его использовании необходимо следовать некоторым правилам, чтобы он не стал источником опасности.

При установке важно придерживаться следующих рекомендаций:

  1. Котел нужно устанавливать в отдельном помещении (его обычно называют котельной или топочной). Его площадь должна быть не менее 4-х «квадратов». В этом помещении должен быть достаточно широкий дверной проем. Также обязательным является наличие хотя бы одного окна (прочитайте: “Правила установки газового котла отопления – инструкция по установке и подключению”).
  2. При внутренней отделке котельной нельзя использовать горючие и пожароопасные материалы.
  3. В помещение должно поступать достаточное количество свежего воздуха, поэтому обязательно создается незакрываемая сквозная отдушина.
  4. Отдельный газоход нужен для выхлопа котла. Для этой цели нельзя использовать систему вентиляции, так как продукты сгорания проникнут в жилые помещения, что может привести к нежелательным проблемам со здоровьем.
  5. Выход газохода должен выступать над коньком крыши минимум на метр.
  6. На пол под котел укладывают прочный лист металла или другого негорючего материала, его площадь должна превышать габариты оборудования, но быть не менее 1 «квадрата».
  7. Двухконтурная система отопления частного дома должна выдерживать опрессовку под давлением минимум 1,8 бар.

Расчет теплообменника пластинчатого

Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.

Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.

Давайте рассмотрим пример общего расчета.

В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.

Q = Qг= Qх

Q – количество теплоты передаваемое или принимаемое теплоносителем ,

Откуда:

Qг = Gгcг·(tгн – tгк) и Qх = Gхcх·(tхк – tхн)

где:

Gг,х – расход горячего и холодного теплоносителей [кг/ч]; сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град]; tг,х н – начальная температура горячего и холодного теплоносителей ; tг,х к – конечная температура горячего и холодного теплоносителей ;

При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:

Q = Gcп·(tп – tнас)+ Gr + Gcк·(tнас – tк)

где:

r – теплота конденсации [Дж/кг]; сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град]; tк– температура конденсата на выходе из аппарата .

Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:

Qгор= Qконд= Gr Благодаря данной формуле определяем расход теплоносителя:

Gгор= Q/cгор(tгн– tгк) или Gхол= Q/cхол(tхк– tхн) Формула для расхода, если нагрев идет паром:

Gпара = Q/ Gr

где:

G – расход соответствующего теплоносителя [кг/ч]; Q – количество теплоты ; с – удельная теплоемкость теплоносителей [Дж/кг·град]; r – теплота конденсации [Дж/кг]; tг,х н – начальная температура горячего и холодного теплоносителей ; tг,х к – конечная температура горячего и холодного теплоносителей .

Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:

∆tср = (∆tб — ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм– большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента ∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:

1/k = 1/α1 + δст/λст + 1/α2 + Rзаг

в уравнении:

δст– толщина стенки ; λст– коэффициент теплопроводности материала стенки [Вт/м·град]; α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м2·град]; Rзаг – коэффициент загрязнения стенки.

Специальные формулы

Расчет основывается на уравнении теплопередачи Q = F×k×Δt, где Q означает объем теплового потока (Вт), F — площадь поверхности в м2, k — коэффициент передаваемого тепла, а Δt — разность в показателях температур теплоносителей на входе и выходе из агрегата.

Чтобы вычислить площадь поверхности, используют формулу F=Q/k×Δt. Формула теплопередачи учитывает конструктивные особенности агрегата. Рассмотрев их, можно выделить значения t1 и t2, чтобы рассчитать F. Для вычислений используется формула Q=G1cp1(t1вх–t1вых)=G2cp2(t2вых–t2вх), где G1и G2 обозначают расход массы греющего и нагреваемого теплоносителя, cp1 и cp2 — удельную теплоемкость по нормативам. Обмениваясь энергией, теплоносители меняют температуру, поэтому t1вх и t1вых, t2вх и t2вых выводятся в проверочном расчете для сравнения с фактическими температурными показателями

Важно учесть коэффициент теплоотдачи среды и конструктивные особенности теплообменного оборудования. Детальный конструкторский расчет предполагает составление схемы теплообменных агрегатов, включая схему движения теплоносителя

Стандартные размеры элементов и коэффициенты теплоотдачи учитывают в ГОСТах. Чтобы не ошибиться, можно ознакомиться с примерами расчетов для разных типов теплового оборудования. Простые подсчеты выполняются на онлайн-калькуляторе, куда вносятся соответствующие параметры. Для сложных систем понадобятся опыт и знания, а также потребуется соответствующее программное обеспечение. Избежать ошибок можно, если доверить проведение расчетов специалистам.

Конструктивные особенности пластинчатого теплообменника

    Отличительной чертой устройства переноса теплоты является наличие пакета, состоящего из пластин. Они представляют собой гофрированные элементы, изготовленные из металла. Если точнее, то пластины производятся в большинстве случаев из нержавеющей стали, так как она прекрасно выдерживает воздействия теплоносителя, обладающего низким качеством.

Эти элементы соединяются между собой. При этом их крепление осуществляется с поворотом на 180 градусов относительно друг друга. Помимо пакета пластин, в состав теплообменника этого типа еще входит:

• подвижная плита;

• неподвижная плита, на которой расположены патрубки для присоединения трубопроводов;

• элементы крепления, благодаря которым происходит стягивание 2-х плит и создается рама;

• две направляющие (верхняя и нижняя), имеющие вид круглого прута.

     Такая продуманная компоновка устройства позволяет создавать аппараты, отличающиеся компактными габаритами.

     Рама пластинчатого теплообменника служит для закрепления пластин, которые изготавливаются не только из нержавейки, но и из меди или графита. Благодаря тому, что поверхность устройства является своеобразной, она создает довольно сильную турбулентность средам, использующимся для переноса тепла и движущимся по трубам. За счет этого возрастает теплопередача у аппарата.

      После установки гофрированных пластин на свои места образуется две герметичные системы, полностью изолированные друг от друга. Именно по ним движется холодная и горячая среда. Благодаря такой конструкции происходит теплообмен.

      Из гофрированных пластин собирается пакет. При этом они располагаются крест-накрест. Такое их размещение позволяет создать жесткую конструкцию. Все гофрированные пластины оснащаются прокладками для уплотнения соединений. Это очень важные элементы, обеспечивающие хорошую герметичность устройства особенно в рабочем состоянии. Прокладки позволяют теплоносителям бесперебойно протекать в противоположных направлениях по трубам. Они имеют особую конфигурацию. Благодаря такой конструктивной особенности уплотнительных элементов не допускается смешивание холодной и горячей среды.

     Высокий требуемый коэффициент передачи тепла будет обеспечен, если правильно подобрать размер теплообменника в соответствии с заданным объемом проходящей среды. Тем более в таком устройстве наблюдается повышенная турбулентность носителя тепла.

     Теплообменник, состоящий из гофрированных пластин — это устройство поверхностного типа. По нему движется нагреваемая и нагревающая среда. Между ними происходит передача тепла через стенку из металла. Именно она получила название — поверхность теплообмена. Основными элементами такого теплообменника являются гофрированные пластины. Эти элементы достаточно тонкие и изготавливаются методом штампования.

     Применяются пластинчатые теплообменники, как нагревательные или охладительные устройства. Их используют в разных технологических процессах, а также в нефтяной, газовой промышленности и во многих других отраслях. На фото ниже представлен пластинчатый теплообменник в индивидуальном тепловом пункте многоквартирного дома.

Здесь он используется для подогрева холодной воды в систему ГВС дома, система горячего водоснабжения при этом закрытая.

Что необходимо знать для осуществления расчета теплообменного оборудования?

Для того чтобы грамотно выполнить расчет теплообменника, нужно знать:

  1. Температуру обоих контуров на входе и выходе.
  2. Допустимую (по max) температуру для работы.
  3. Давление рабочей среды.
  4. Расход рабочей среды (массовый) и в том, и в другом контурах (речь о пропускной способности оборудования).
  5. Тепловую мощность (то количество тепла, которое отдает оборудование).

Кроме того, понадобятся при расчетах следующие характеристики:

  • вид рабочей среды и ее вязкость (это по подбору материала на пластины);
  • LMTD (средний температурный напор);
  • загрязненность среды (уровень в цифрах), если потребуется.

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий