Солнечные батареи: все про альтернативный источник энергии — solar-energ

Ветроэнергетика

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

Влияние на экологию

Важным аргументом, который подтверждает необходимость использования альтернативных источников энергии, является тот факт, что ежегодное производство электроэнергии возобновляемым источником мощностью 160 кВт предотвращает выброс в атмосферу огромного количества загрязнителей.

К ним относятся:

  • двуокись серы – 2000 кг;
  • двуокись азота – 500 кг;
  • двуокись углерода – 250 000 кг;
  • пыль и шлаки – 17 500 кг.

Плюс к этому, энергия природы – мирный источник, исключающий войны и борьбу за лакомый кусок земли, содержащий залежи нефти или газа. Более того, это источник, доступный каждому человеку и не контролирующийся сильными мира сего. Не поэтому ли первые разработки в области альтернативного получения энергии оказались «забытыми» на десятки лет?

Коллектор Станилова

Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.

Конструкция коллектора

Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.

На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.

Материалы и детали для изготовления

Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:

  • стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
  • рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
  • доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
  • прокатный уголок;
  • соединительная муфта;
  • трубы для сборки радиатора;
  • хомуты для крепления радиатора;
  • лист оцинкованного железа;
  • приёмная и выпускная труба радиатора;
  • бак объемом 200−300 литров;
  • аквакамера;
  • теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).

Этапы работ

Этапы изготовления коллектора Станилова своими руками:

  1. Из досок сколачивается контейнер, дно которого укрепляется брусьями.
  2. На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
  3. После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
  4. Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
  5. Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
  6. Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
  7. Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
  8. После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
  9. Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.

Схемы установки солнечного коллектора

В автономных системах обогрева и горячего водоснабжения обязательно нужно использовать накопительный бак для аккумуляции тепловой энергии. Связано это с тем, что распределение тепла, которое генерирует гелиоустановка, не пропорционально расходу энергии. Поэтому полученные ресурсы сначала аккумулируют в специальной емкости, а потом только потребляют по мере необходимости.

Специалисты рекомендуют использовать для этой цели стандартный накопительный бак для системы горячего водоснабжения или, как альтернативный вариант, — буферную емкость из автономной отопительной системы. Грамотно построенная конструкция подразумевает соединение коллектора с дополнительным теплообменником, который напрямую контактирует с накопительным баком. Существует пять проверенных на практике схем подключения оборудования.

№1. ГВС с естественной циркуляцией материала-теплоносителя

Данная схема используется преимущественно на малых площадях (например, для летнего душа), но вполне применима и для небольших строений — бани или дачного домика. Солнечный коллектор нужно установить ниже уровня накопительного бака не более, чем на 1 метр. Благодаря этому будет обеспечена естественная циркуляция жидкости в системе. Для соединения аккумулирующей емкости и коллектора желательно использовать трубы на ¾ дюйма.

Если вы планируете использовать горячую воду в вечернее время, накопительный бак нужно утеплить или купить готовую емкость, функционирующую по аналогии с термосом

Обратите внимание, что слой утеплителя не должен быть меньше 10 см. Это самая доступная схема подключения солнечного коллектора, однако она имеет один недостаток — минимальную инерционность

При минусовой температуре окружающей среды воду придется сливать, чтобы не допустить разгерметизации водопроводных труб.

№2. Зимний вариант установки солярного коллектора для ГВС

В данном случае теплоноситель для солнечных коллекторов — антифриз. Это позволяет избежать замерзания воды в трубах зимой. Но здесь нужно использовать аккумулирующую емкость косвенного нагрева с медным змеевиком. Непрерывная циркуляция жидкости происходит непосредственно между внутренними магистралями гелиосистемы и змеевиком, установленным в накопительном баке.

Данная схема монтажа рассчитана на естественную циркуляцию, но желательно «прогонять» теплоноситель для гелиосистем принудительно, используя циркуляционный насос. Дополнительно нужно установить расширительный бак.

№3. Схема подключения коллектора для отопления дома

Этот вариант подразумевает использование емкости косвенного нагрева, которая работает на твердом или «голубом» топливе. Поздней весной и летом котел можно отключать, поскольку воду будет нагревать коллектор. А вот зимой эффективность гелиосистем в северо-восточных регионах России не очень велика, так как интенсивность солнечного излучения минимальна. По этой причине коллектор используют в качестве источника дополнительного подогрева к отопительным системам.

Но даже в этом случае владелец дома получает возможность более рационально расходовать традиционные энергоресурсы. Чтобы обеспечить отопление дома в зимний период при помощи только одного солнечного коллектора, габариты всей конструкции должны составлять не менее 30–40% от площади здания.

№4. Монтаж гелиосистемы для отопления и ГВС

Типовая схема подключения объединяет сразу два варианта, то есть подходит одновременно для организации автономного отопления и горячего водоснабжения. Здесь применяется двухконтурная теплоаккумулирующая емкость— помимо медного змеевика, монтируется также дополнительный внутренний резервуар.

Такая схема установки дает возможность отделить техническую жидкость от питьевой воды. Для автоматизации процесса нагрева теплоносителя в систему интегрируют специальный контроллер солнечного коллектора, который позволяет избежать перерасхода энергоресурсов за счет контроля над температурой теплоносителя в гелиосистеме и температурой воды в буфере.

№5. Установка коллектора для подогрева бассейна

Данная схема не подходит к системе отопления, а используется, когда необходимо нагреть воду в открытом бассейне переносного типа. Чтобы обеспечить циркуляцию жидкости, допускается использовать стандартную погружную помпу. Если на вашем участке находится стационарный бассейн, для большего удобства оборудование лучше подключить к бытовой автоматизированной насосной станции.

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Фото из

Установка из солнечных панелей позволяет рационально использовать бесплатную, к тому же неисчерпаемую энергию солнечных лучей

Миниатюрные электростанции, собранные из солнечных батарей, обеспечат энергией неэлектрифицированные объекты и дома, расположенные в регионах с перебоями в поставке электричества

Установки, перерабатывающие УФ излучение в электроэнергию, занимают минимум места. их располагают на крышах домов, хозпостроек, гаражей, беседок, веранд. Реже их располагают на открытых, не занятых постройками и насаждениями площадках

Солнечные батареи – незаменимое оборудование для любителей путешествий. Оно обеспечит энергией вдали от источников электропитания

Использование солнечной энергии предоставит возможность существенно сократить затраты на содержание дач и загородных домов. собрать и установить экономически полезную систему без затруднений можно собственными руками

Расположенные на корме яхты, палубе корабля или носу катера солнечные батареи обеспечат электроэнергией, благодаря которой можно поддерживать стабильную связь с берегом

Портативная солнечная панель с аккумулятором исключит возникновение экстремальных ситуаций вдали от населенных пунктов, гарантирует зарядку мобильных устройств для общения с близкими

Выпускаемые специально для походов легкие компактные зарядные устройства на основе солнечных батарей обеспечат энергией телефоны, рации, планшеты и медиа-технику

Рациональное использование природных ресурсов

Обеспечение энергией неэлектрифицированных объектов

Монтаж солнечных панелей на крыше

Мобильная солнечная батарея в кемпинге

Самостоятельный монтаж на дачном участке

Генератор энергии в морских прогулках

Портативная солнечная панель с аккумулятором

Занимающий минимум места прибор

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Виды солнечных панелей

Солнечные батареи функционируют долго, могут вырабатывать постоянный ток, даже если погода пасмурная. Вместе с тем появляется возможность предупредить возникновение скачков напряжения. Как результат, техника на объекте, подключенная к такому источнику электроэнергии, служит дольше, т. к. созданы более щадящие условия эксплуатации (исключается риск повышения, падения напряжения, отключение питания).

Модуль представляет собой панель, состоящую из нескольких преобразователей, объединенных между собой. Чтобы изменить характеристики солнечной батареи, добавляют такие конструкции. Но эффективность работы подобных устройств зависит не только от количества модулей, а еще и от того, насколько правильно была выполнена установка (учитывают углы наклона панелей, интенсивность солнечного освещения на участке). Модули представлены видами:

Монокристаллические. Производятся из чистого материала – монокристаллического кремния. Его отличает высокие показатели эффективности. Причем КПД солнечных элементов – около 22%, а панелей на их основе – не более 18%. Такие модули рекомендуется применять в местности, где уровень освещенности часто низкий.

Монокристаллическая солнечная панель

Поликристаллические. По стоимости они предпочтительнее, т. к. производятся из мультикристаллических пластин. Еще одна причина низкой цены – недостаточно высокая производительность. Рекомендуется применять такие модули, если в местности сравнительно одинаковый уровень освещенности в разное время, отсутствуют резкие перепады.

Поликристаллические солнечные панели

Аморфные. Другое название – тонкопленочные солнечные батареи. Они отличаются универсальным действием (применяются на разных объектах, в различных целях). Могут устанавливаться там, где жаркое солнце внезапно сменяется облачной погодой. Теоретически аморфные панели в будущем будут использоваться не только на крышах, но и на сумках, других бытовых изделиях. Минусом таких панелей является более низкая производительность, если сравнивать с поли-, монокристаллическими.

Тонкопленочные (аморфные) солнечные панели

Гетероструктурные. Считаются наиболее эффективными, их КПД достигает 25%. Панели вырабатывают электроэнергию при солнечной и пасмурной погоде. В России такую продукцию представляет марка «Хевел». Компания-производитель разрабатывает и внедряет собственную технологию производства гетероструктурных панелей.

Гетероструктурные солнечные панели

Основные элементы конструкции:

  • аккумулятор, позволяющая устранить перепады напряжения, вызванные изменением освещенности панели, а еще одна накапливает энергию;
  • инвертор – преобразователь тока (из постоянного в переменный);
  • контроллер: обеспечивает стабильную работу модуля, т. к. контролирует все параметры (температуру, зарядное напряжение аккумулятора и др.).

В продаже встречаются готовые системы, а также отдельные элементы для сбора с учетом собственных потребностей.

Энергия солнца – история и развитие

Солнечная энергия является основным источником энергии на Земле. Солнечное излучение используется для производства электроэнергии и тепла. Однако следует помнить, что оно также используется в процессе фотосинтеза растениями, которые затем образуют резервы биомассы. Энергия ископаемого топлива, в настоящее время основного энергетического ресурса, также является энергией солнца. Миллионы лет назад он был «захвачен» биомассой, а затем подвергся трансформации. И в результате биохимических и физико-химических процессов превратился в уголь, нефть и природный газ. также генерируются солнечной радиацией.

Люди всегда использовали возобновляемую энергию Солнца. В древности сушили пищу и использовали для розжига. Для этой последней цели древние греки приспособили заполненный водой стеклянный сосуд сферической формы, которая фокусировала солнечные лучи.

Со временем Солнце стали использовать для производства тепловой энергии. В 1897 году в городе Пасадена около Лос-Анджелеса, 30% домов были обогреты таким образом. Солнечная энергия впервые использовалась для производства электроэнергии.

В Калифорнии, в пустыне Мохаве, в 200 км к северо-востоку от Лос-Анджелеса, в 1984-1992 годах был создан комплекс из 13 гелиотермальных электростанций различной мощности. Также в Калифорнии в 1984 году была запущена электростанция Carissa Plain, производящая электричество с использованием гели-электрического метода. Этот метод предполагает прямое преобразование солнечной энергии в электрическую энергию с использованием фотоэлементов. Такие клетки преобразуют не только прямое излучение Солнца в электрическую, но и рассеянное излучение с облачностью.

Виды

В зависимости от работы можно выделить следующие вид гелиоустановок — плоская, вакуумная, воздушная. Рассмотрим подробнее каждый их них.

Плоские

Панель является воздухонепроницаемой и состоит из нескольких элементов:

  • Поглощающая пластина или абсорбер напрямую связан с теплопроводящей системой. Покрыт черной краской или специальным покрытием.
  • Прозрачное покрытие сделано из поликарбоната или из закаленного стекла с низкой содержанием металлов.
  • Термоизолирующий слой. Трубки теплоносителя изготавливают из меди или сшитого полиэтилена.

Принцип работы простой — абсорбер нагревается и передает тепло змеевику, в котором находится теплоноситель. Установка простая в монтаже и использовании.

Преимущества:

  • невысокая стоимость;
  • возможность устанавливать систему под любым углом;
  • высокий КПД в теплое время года;
  • не нужно вручную очищать установку от снега и инея.

Единственным весомый минус системы — высокий уровень тепловых потерь. Чтобы минимизировать потери используют утеплители, например, винвату. Однако и это не лучший способ, если температура внутри корпуса и снаружи сильно отличается. Поэтому такие установки малоэффективны для работы в холодное время года.

Вакуумный

Вакуумный или трубчатый коллектор имеет более сложную конструкцию. Панель представляет собой много стеклянных трубок, внутри которых вставлен абсорбер. Каждая трубка полностью вакуумированная, поэтому сохраняет до 97% тепла. Такие коллекторы используют круглый год, они способны эффективно работать при температуре до -37 градусов.

Преимущества:

  • низкие теплопотери;
  • работа при низким температурах;
  • низкая парусность конструкции;
  • легкий монтаж.

Недостатки:

  • рабочий угол установки 20 градусов;
  • необходимо чистить гелиосистемы от снега и инея.

Воздушный

  • быстрый нагрев воздуха;
  • не нужно использования электричества и газа.

Недостатки:

  • Коллекторы работают только при солнечной погоде. При пасмурной погоде эффективность практически нулевая.
  •  При монтаже необходимо будет высверливать отверстия в стене или крыше, в зависимости от места установки.

Воздушные солнечные коллекторы сейчас получили широкое применение среди владельцев частных домов. Их использование является дополнительным источником отопления и вентиляции воздуха.

Обзор лучших моделей

Лучшие коллекторы

Среди плоских конструкций наилучшей считается FPC-2200. У этого устройства активная площадь составляет 2,1 квадратных метра. Коэффициент полезного действия, если правильно установить изделие, будет достигать 94%. С его помощью можно достичь температуры теплоносителя в 135 градусов, наибольшее давление в системе будет составлять 1МПа. Без каркаса устанавливать запрещено. Стоит порядка 30 тысяч рублем.

Лучшим воздушным коллектором считает SOLARVENTI SV3, он способен работать полностью в автономном режиме. Предназначен не только для жилых помещений, но и для складов, разного рода иных технических помещений. Максимальная площадь, которую он может обогревать составляет всего лишь 25 квадратных метров. Изделие отличается компактными габаритами, масса составляет около 6 см, его разрешается устанавливать как в горизонтальном, так и в вертикальном положении. Стоит достаточно дорого – 40 тысяч рублей.

На сегодняшний день вакуумные модели на российском рынке не представлены. Такой коллектор будет хорошим дополнением к стандартной отопительной системе дома или квартиры.

Использование солнечной энергии в химическом производстве

Солнечная энергия может применяться в различных химических процессах. Например:

  • Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
  • Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).

Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.

Выбор конструкции абсорбера коллектора

Абсорбер предлагается сделать трубчатым, то есть состоящим из нескольких параллельных трубок, объединенных на входе и выходе распределительными гребенками.

В этом случае для изготовления данной части коллектора можно применить весьма доступный и удобный материал — алюминиевые банки для газированных напитков.

Для этой цели они подходят идеально, так как обладают целым рядом достоинств:

  1. Алюминий, как уже говорилось, обладает высокой теплопроводностью.
  2. Тонкую стенку банки легко можно разрезать обычным ножом.
  3. В подавляющем большинстве случаев банки для напитков имеют стандартизированный размер ( при объеме в 0,5 л — 168х66 мм).
  4. Ради удобства хранения и транспортировки банкам специально придают такую форму, чтобы они хорошо стыковались одна с другой (верхний край сужают до диаметра 59 мм, а днищу придают вогнутую форму).
  5. После употребления содержимого банку обычно выбрасывают в мусор, поэтому для будущего владельца коллектора этот материал является абсолютно бесплатным.

Иногда банки изготавливают из стали. Выявить такие емкости несложно, так как в отличие от алюминиевых, они притягиваются к магниту. Их следует отбраковывать.

Перед сборкой панели обязательно вымойте банки с применением моющего средства, иначе пропущенный через них воздух будет иметь неприятный запах.

Солнечные батареи: определение и основы.

Научное название этих устройств фотоэлектрические И в основном это означает свет для электричества. На самом деле, это самое простое определение, которое может предложить каждый: солнечные панели — это устройства, которые преобразуют свет в электричество. В общем, их называют солнечными, потому что нашим основным и самым мощным источником света является Солнце, но это не единственный источник света, на который могут реагировать эти панели.

Основной принцип прост: эти солнечные модули используют энергию света Солнца (или фотонов) для создания энергии посредством фотоэлектрического эффекта, который является явлением, которое включает физические и химические реакции.

Чтобы продемонстрировать, насколько эффективны и продвинуты современные солнечные технологии, вы должны знать, что НАСА использует фотоэлектрическую энергию в своем космическом корабле, чтобы гарантировать, что они всегда будут иметь необходимую мощность для развертывания миссий, для которых они отправляются в космос. Единственная проблема с этими устройствами состоит в том, что они всегда должны быть направлены к Солнцу, чтобы получить максимально возможный свет.

Это одно из абсолютных требований солнечной панели: воздействие света

Если устройство не получает прямой свет, его эффективность ниже, поэтому, когда речь идет о домашних системах, позиционирование чрезвычайно важно. Кроме того, когда речь идет о домах, солнечные устройства делятся на три основные категории:

  • солнечные панели горячей воды — эти системы используют солнечную энергию для нагрева воды, необходимой в доме;
  • тепловые солнечные коллекторы — Это устройство используется для захвата солнечного излучения инфракрасных или ультрафиолетовых волн, которое преобразуется в электричество;
  • фотоэлектрические — Эти панели, которые электрически соединены и установлены на опорной конструкции.

Теперь, когда мы знаем, что такое фотоэлектрическое устройство, пришло время посмотреть, как оно на самом деле работает.

Краткие выводы

  1. Динамика роста ВИЭ во всем мире положительна, и составляет около 20% ежегодно на протяжении последних 10-15 лет.
  2. Энергия из альтернативных возобновляемых источников становится дешевле. Уже сегодня во многих регионах мира ту или иную ее разновидность использовать выгоднее, чем традиционные виды топлива.
  3. Возобновляемая энергетика гарантирует принципиальную невозможность исчерпания ее запасов.
  4. Переход на ВИЭ благотворно влияет на экологию. Особенно заметно это в больших городах и наиболее загрязненных регионах планеты.
  5. В перспективе полный отказ от ископаемых видов топлива поможет сэкономить в масштабах планеты более 13,8 триллиона долларов в год только на медицинских расходах. Прежде всего, это относится к кардинальному уменьшению заболеваний верхних дыхательных путей, кровеносной системы, а также развитию рака.
Поделитесь в социальных сетях:FacebookX
Напишите комментарий